Linear invariant tensor interpolation applied to cardiac diffusion tensor MRI

作者: Jin Kyu Gahm , Nicholas Wisniewski , Gordon Kindlmann , Geoffrey L. Kung , William S. Klug

DOI: 10.1007/978-3-642-33418-4_61

关键词:

摘要: Purpose: Various methods exist for interpolating diffusion tensor fields, but none of them linearly interpolate shape attributes. Linear interpolation is expected not to introduce spurious changes in shape. Methods: Herein we define a new linear invariant (LI) method that interpolates components (tensor invariants) and recapitulates the interpolated from invariants eigenvectors tensor. The LI compared Euclidean (EU), affine-invariant Riemannian (AI), log-Euclidean (LE) geodesic-loxodrome (GL) using both synthetic field three experimentally measured cardiac DT-MRI datasets. Results: EU, AI, LE significant microstructural bias, which can be avoided through use GL or LI. Conclusion: introduces least performs very similarly at substantially reduced computational cost.

参考文章(14)
Chongke Bi, Shigeo Takahashi, Issei Fujishiro, Interpolating 3D Diffusion Tensors in 2D Planar Domain by Locating Degenerate Lines Advances in Visual Computing. pp. 328- 337 ,(2010) , 10.1007/978-3-642-17289-2_32
Geoffrey L. Kung, Tom C. Nguyen, Aki Itoh, Stefan Skare, Neil B. Ingels, D. Craig Miller, Daniel B. Ennis, The presence of two local myocardial sheet populations confirmed by diffusion tensor MRI and histological validation. Journal of Magnetic Resonance Imaging. ,vol. 34, pp. 1080- 1091 ,(2011) , 10.1002/JMRI.22725
Xavier Pennec, Pierre Fillard, Nicholas Ayache, A Riemannian Framework for Tensor Computing International Journal of Computer Vision. ,vol. 66, pp. 41- 66 ,(2006) , 10.1007/S11263-005-3222-Z
Feng Yang, Yue-Min Zhu, Isabelle E. Magnin, Jian-Hua Luo, Pierre Croisille, Peter B. Kingsley, Feature-based interpolation of diffusion tensor fields and application to human cardiac DT-MRI Medical Image Analysis. ,vol. 16, pp. 459- 481 ,(2012) , 10.1016/J.MEDIA.2011.11.003
P. G. Batchelor, M. Moakher, D. Atkinson, F. Calamante, A. Connelly, A rigorous framework for diffusion tensor calculus Magnetic Resonance in Medicine. ,vol. 53, pp. 221- 225 ,(2005) , 10.1002/MRM.20334
P.J. Basser, J. Mattiello, D. Lebihan, Estimation of the Effective Self-Diffusion Tensor from the NMR Spin Echo Journal of Magnetic Resonance, Series B. ,vol. 103, pp. 247- 254 ,(1994) , 10.1006/JMRB.1994.1037
Christophe Lenglet, Mikaël Rousson, Rachid Deriche, Olivier Faugeras, Statistics on the Manifold of Multivariate Normal Distributions: Theory and Application to Diffusion Tensor MRI Processing Journal of Mathematical Imaging and Vision. ,vol. 25, pp. 423- 444 ,(2006) , 10.1007/S10851-006-6897-Z
Vincent Arsigny, Pierre Fillard, Xavier Pennec, Nicholas Ayache, Log-Euclidean metrics for fast and simple calculus on diffusion tensors Magnetic Resonance in Medicine. ,vol. 56, pp. 411- 421 ,(2006) , 10.1002/MRM.20965
P. Thomas Fletcher, Sarang Joshi, Riemannian geometry for the statistical analysis of diffusion tensor data Signal Processing. ,vol. 87, pp. 250- 262 ,(2007) , 10.1016/J.SIGPRO.2005.12.018
Daniel B. Ennis, Gordon Kindlman, Ignacio Rodriguez, Patrick A. Helm, Elliot R. McVeigh, Visualization of tensor fields using superquadric glyphs Magnetic Resonance in Medicine. ,vol. 53, pp. 169- 176 ,(2005) , 10.1002/MRM.20318