Automatic bearing fault diagnosis using particle swarm clustering and Hidden Markov Model

作者: Mitchell Yuwono , Yong Qin , Jing Zhou , Ying Guo , Branko G. Celler

DOI: 10.1016/J.ENGAPPAI.2015.03.007

关键词:

摘要: Ball bearings are integral elements in most rotating manufacturing machineries. While detecting defective bearing is relatively straightforward, discovering the source of defect requires advanced signal processing techniques. This paper proposes an automatic diagnosis method based on Swarm Rapid Centroid Estimation (SRCE) and Hidden Markov Model (HMM). Using frequency signatures extracted with Wavelet Kurtogram Cepstral Liftering, SRCE+HMM achieved average sensitivity, specificity, error rate 98.02%, 96.03%, 2.65%, respectively, fault vibration data provided by Case School Engineering Western Reserve University (CSE) which warrants further investigation. Graphical abstractDisplay Omitted HighlightsThis algorithm for rolling defects.The classification was optimized swarm clustering.The features were harmonics using wavelet kurtogram cepstral liftering.The obtained from University.Sensitivity specificity 98.02% 96.03% test data.

参考文章(25)
Pierre Granjon, Valeriu Vrabie, Christine Serviere, Spectral kurtosis: from definition to application 6th IEEE International Workshop on Nonlinear Signal and Image Processing (NSIP 2003). ,(2003)
A. D. Sahasrabudhe, P. G. Kulkarni, Application Of Wavelet Transform For Fault Diagnosisof Rolling Element Bearings International Journal of Scientific & Technology Research. ,vol. 2, pp. 138- 148 ,(2013)
D.W. van der Merwe, A.P. Engelbrecht, Data clustering using particle swarm optimization congress on evolutionary computation. ,vol. 1, pp. 215- 220 ,(2003) , 10.1109/CEC.2003.1299577
Robert B. Randall, Jérôme Antoni, Rolling element bearing diagnostics—A tutorial Mechanical Systems and Signal Processing. ,vol. 25, pp. 485- 520 ,(2011) , 10.1016/J.YMSSP.2010.07.017
S. Kullback, R. A. Leibler, On Information and Sufficiency Annals of Mathematical Statistics. ,vol. 22, pp. 79- 86 ,(1951) , 10.1214/AOMS/1177729694
Michael Feldman, Hilbert transform in vibration analysis Mechanical Systems and Signal Processing. ,vol. 25, pp. 735- 802 ,(2011) , 10.1016/J.YMSSP.2010.07.018
Yaguo Lei, Jing Lin, Zhengjia He, Yanyang Zi, Application of an improved kurtogram method for fault diagnosis of rolling element bearings Mechanical Systems and Signal Processing. ,vol. 25, pp. 1738- 1749 ,(2011) , 10.1016/J.YMSSP.2010.12.011
Mitchell Yuwono, Steven W. Su, Bruce D. Moulton, Hung T. Nguyen, Data Clustering Using Variants of Rapid Centroid Estimation IEEE Transactions on Evolutionary Computation. ,vol. 18, pp. 366- 377 ,(2014) , 10.1109/TEVC.2013.2281545
P. Goupillaud, A. Grossmann, J. Morlet, Cycle-octave and related transforms in seismic signal analysis Geoexploration. ,vol. 23, pp. 85- 102 ,(1984) , 10.1016/0016-7142(84)90025-5
CE Shennon, Warren Weaver, A mathematical theory of communication Bell System Technical Journal. ,vol. 27, pp. 379- 423 ,(1948) , 10.1002/J.1538-7305.1948.TB01338.X