The glyoxylate cycle is required for fungal virulence

作者: Michael C. Lorenz , Gerald R. Fink

DOI: 10.1038/35083594

关键词:

摘要: Candida albicans, a normal component of the mammalian gastrointestinal flora, is responsible for most fungal infections in immunosuppressed patients. normally phagocytosed by macrophages and neutrophils, which secrete cytokines induce hyphal development this fungus1,2. Neutropenic patients, deficient these immune cells, are particularly susceptible to systemic candidiasis3,4. Here we use genome-wide expression profiles related yeast Saccharomyces cerevisiae obtain signature events that take place fungus on ingestion macrophage. Live S. cells isolated from phagolysosome induced genes glyoxylate cycle, metabolic pathway permits two-carbon compounds as carbon sources. In C. phagocytosis also upregulates principal enzymes isocitrate lyase (ICL1) malate synthase (MLS1). albicans mutants lacking ICL1 markedly less virulent mice than wild type. These findings fungi, conjunction with reports both upregulated required virulence Mycobacterium tuberculosis5,6, demonstrate wide-ranging significance cycle microbial pathogenesis.

参考文章(18)
Wycliffe L. Wright, Richard P. Wenzel, NOSOCOMIAL CANDIDA: Epidemiology, Transmission, and Prevention Infectious Disease Clinics of North America. ,vol. 11, pp. 411- 425 ,(1997) , 10.1016/S0891-5520(05)70363-9
Fred Sherman, Getting started with yeast. Methods in Enzymology. ,vol. 350, pp. 3- 41 ,(2002) , 10.1016/S0076-6879(02)50954-X
John M. Sedivy, Dan G. Fraenkel, Fructose bisphosphatase of Saccharomyces cerevisiae. Cloning, disruption and regulation of the FBP1 structural gene. Journal of Molecular Biology. ,vol. 186, pp. 307- 319 ,(1985) , 10.1016/0022-2836(85)90107-X
John D. McKinney, Kerstin Höner zu Bentrup, Ernesto J. Muñoz-Elías, Andras Miczak, Bing Chen, Wai-Tsing Chan, Dana Swenson, James C. Sacchettini, William R. Jacobs, David G. Russell, Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase Nature. ,vol. 406, pp. 735- 738 ,(2000) , 10.1038/35021074
Hsiu-Jung Lo, Julia R Köhler, Beth DiDomenico, David Loebenberg, Anthony Cacciapuoti, Gerald R Fink, Nonfilamentous C. albicans Mutants Are Avirulent Cell. ,vol. 90, pp. 939- 949 ,(1997) , 10.1016/S0092-8674(00)80358-X
Burkhard R. Braun, Alexander D. Johnson, Control of Filament Formation in Candida albicans by the Transcriptional Repressor TUP1 Science. ,vol. 277, pp. 105- 109 ,(1997) , 10.1126/SCIENCE.277.5322.105
G. Bodey, B. Bueltmann, W. Duguid, D. Gibbs, H. Hanak, M. Hotchi, G. Mall, P. Martino, F. Meunier, S. Milliken, S. Naoe, M. Okudaira, D. Scevola, J. Wout, Fungal infections in cancer patients: an international autopsy survey. European Journal of Clinical Microbiology & Infectious Diseases. ,vol. 11, pp. 99- 109 ,(1992) , 10.1007/BF01967060
Richard D. Cannon, Howard F. Jenkinson, Maxwell G. Shepherd, Cloning and expression of Candida albicans ADE2 and proteinase genes on a replicative plasmid in C. albicans and in Saccharomyces cerevisiae. Molecular Genetics and Genomics. ,vol. 235, pp. 453- 457 ,(1992) , 10.1007/BF00279393