Automatic detection and classification of crackles by using a neural network

作者: Tulga Kalayci , Gurbuz Celebi , Yusuf Ozturk , Mustafa Ozhan

DOI: 10.1109/IEMBS.1992.5761597

关键词:

摘要: In this study a neural network has been Implemented to detect and classify crackle signals. The system observed be superior systems employing time domain features.

参考文章(7)
T. J. Sejnowski, Parallel networks that learn to pronounce English text Complex Systems. ,vol. 1, pp. 145- 168 ,(1987)
M. Ono, K. Arakawa, M. Mori, T. Sugimoto, H. Harashima, Separation of fine crackles from vesicular sounds by a nonlinear digital filter IEEE Transactions on Biomedical Engineering. ,vol. 36, pp. 286- 291 ,(1989) , 10.1109/10.16477
A. Cohen, Signal processing methods for upper airway and pulmonary dysfunction diagnosis IEEE Engineering in Medicine and Biology Magazine. ,vol. 9, pp. 72- 75 ,(1990) , 10.1109/51.62912
Riichiro Mikami, Makoto Murao, David W. Cugell, Jacques Chrétien, Peter Cole, J. Meier-Sydow, Raymond L.H. Murphy, Robert G. Loudon, International Symposium on Lung Sounds: Synopsis of Proceedings Chest. ,vol. 92, pp. 342- 345 ,(1987) , 10.1378/CHEST.92.2.342
Arnon Cohen, Dorota Landsberg, Analysis and Automatic Classification of Breath Sounds IEEE Transactions on Biomedical Engineering. ,vol. 31, pp. 585- 590 ,(1984) , 10.1109/TBME.1984.325301
R. Lippmann, An introduction to computing with neural nets IEEE ASSP Magazine. ,vol. 4, pp. 4- 22 ,(1987) , 10.1109/MASSP.1987.1165576
J. Alspector, Neural-style microsystems that learn IEEE Communications Magazine. ,vol. 27, pp. 29- 36 ,(1989) , 10.1109/35.41398