Diffusion on fractals with singular waiting-time distribution

作者: Harald Harder , Shlomo Havlin , Armin Bunde

DOI: 10.1103/PHYSREVB.36.3874

关键词:

摘要: We study diffusion in lattices of arbitrary dimensions with a power-law distribution waiting times \ensuremath{\tau}, P(\ensuremath{\tau})\ensuremath{\sim}${\ensuremath{\tau}}^{\ensuremath{\alpha}\mathrm{\ensuremath{-}}2}$, \ensuremath{\alpha}1, \ensuremath{\tau}\ensuremath{\ge}1. Using general scaling arguments we find that the asymptotic behavior mean-square displacement random walker is given , where d${\ifmmode\bar\else\textasciimacron\fi{}}_{w}$=${d}_{w}$ for \ensuremath{\alpha}0 and d${\ifmmode\bar\else\textasciimacron\fi{}}_{w}$=${d}_{w}${1+${d}_{s}$\ensuremath{\alpha}/[2(1-\ensuremath{\alpha})]} 0\ensuremath{\le}\ensuremath{\alpha}1 ${d}_{s}$\ensuremath{\le}2. Here ${d}_{w}$ (conventional) exponent constant ${d}_{s}$ fracton dimension substrate. Our expression d${\ifmmode\bar\else\textasciimacron\fi{}}_{w}$ holds Euclidean as well deterministic fractals. have also investigated properties function P\ifmmode \tilde{}\else \~{}\fi{}(l,t) corresponding moments 〈${l}^{q}$〉, l chemical distance traveled time t. To test our theoretical expressions performed extensive computer simulations on incipient percolation cluster d=2, using exact enumeration method. The numerical results agree predictions.

参考文章(23)
P M Kogut, J P Straley, Distribution-induced non-universality of the percolation conductivity exponents Journal of Physics C: Solid State Physics. ,vol. 12, pp. 2151- 2159 ,(1979) , 10.1088/0022-3719/12/11/023
Armin Bunde, Harald Harder, Shlomo Havlin, Nonuniversality of diffusion exponents in percolation systems Physical Review B. ,vol. 34, pp. 3540- 3542 ,(1986) , 10.1103/PHYSREVB.34.3540
A. Blumen, J. Klafter, B. S. White, G. Zumofen, Continuous-Time Random Walks on Fractals Physical Review Letters. ,vol. 53, pp. 1301- 1304 ,(1984) , 10.1103/PHYSREVLETT.53.1301
S Robillard, A -M S Tremblay, Anomalous diffusion on fractal lattices with site disorder Journal of Physics A. ,vol. 19, pp. 2171- 2181 ,(1986) , 10.1088/0305-4470/19/11/025
S Havlin, B L Trus, G H Weiss, A phase transition in the dynamics of an exact model for hopping transport Journal of Physics A. ,vol. 19, ,(1986) , 10.1088/0305-4470/19/13/011
S Havlin, D Movshovitz, B Trus, G H Weiss, Probability densities for the displacement of random walks on percolation clusters Journal of Physics A. ,vol. 18, ,(1985) , 10.1088/0305-4470/18/12/006
H. Scher, M. Lax, Stochastic Transport in a Disordered Solid. I. Theory Physical Review B. ,vol. 7, pp. 4491- 4502 ,(1973) , 10.1103/PHYSREVB.7.4491
Imtiaz Majid, Daniel Ben- Avraham, Shlomo Havlin, H. Eugene Stanley, Exact-enumeration approach to random walks on percolation clusters in two dimensions Physical Review B. ,vol. 30, pp. 1626- 1628 ,(1984) , 10.1103/PHYSREVB.30.1626
P. L. Leath, Cluster size and boundary distribution near percolation threshold Physical Review B. ,vol. 14, pp. 5046- 5055 ,(1976) , 10.1103/PHYSREVB.14.5046
S Havlin, R Nossal, Topological properties of percolation clusters Journal of Physics A. ,vol. 17, ,(1984) , 10.1088/0305-4470/17/8/007