Orthogonal and Symplectic Clifford Algebras: Spinor Structures

作者: Albert Crumeyrolle

DOI:

关键词:

摘要: Orthogonal and Symplectic Geometries.- Tensor Algebras, Exterior Algebras Symmetric Algebras.- Clifford The Groups, the Twisted Groups Their Fundamental Subgroups.- Spinors Spin Representations.- Lie in Matrix Approach to Three Four-Dimensional Spaces.- Maximal Index Even Dimension.- Odd Hermitian Structure on Space of Complex Spinors-Conjugations Related Notions.- Spinoriality Groups.- Coverings Complete Conformal Group-Twistors.- Triality Principle, Interaction Principle Orthosymplectic Graded Algebra Bundle a Pseudo-Riemannian Manifold. Existence Conditions for Spinor Structures.- Derivations.- Dirac Equation.- Associated Bundles-The Maslov Index.- Deformations Manifolds.- Primitive Idempotents Amorphic Fiber Bundles.- Self-Dual Yang-Mills Fields Penrose Transform Context.- Structures, Complex, Fourier Transform.

参考文章(0)