Using Mixed Precision for Sparse Matrix Computations to Enhance the Performance while Achieving 64-bit Accuracy

作者: Alfredo Buttari , Jack Dongarra , Jakub Kurzak , Piotr Luszczek , Stanimir Tomov

DOI: 10.1145/1377596.1377597

关键词:

摘要: By using a combination of 32-bit and 64-bit floating point arithmetic, the performance of many sparse linear algebra algorithms can be significantly enhanced while maintaining the 64-…

参考文章(53)
Dominik Goddeke, Robert Strzodka, Stefan Turek, Accelerating Double Precision FEM Simulations with GPUs hgpu.org. ,(2011)
Xiaoye S. Li, Sparse Gaussian Elimination on High Performance Computers University of California, Berkeley. ,(1996)
W. D. Gropp, B. F. Smith, D. K. Kaushik, D. E. Keyes, Latency, bandwidth, and concurrent issue limitations in high-performance CFD. First M.I.T. Conference on Computational Fluid and Solid Mechanics, Cambridge, MA (US), 06/12/2001--06/14/2001; Other Information: PBD: 10 Nov 2000. ,(2000)
Julien Langou, Jack Dongarra, Piotr Luszczek, Jakub Kurzak, Julie Langou, Alfredo Buttari, Exploiting the Performance of 32 bit Floating Point Arithmetic in Obtaining 64 bit Accuracy ,(2006)
James W. Demmel, Applied Numerical Linear Algebra ,(1997)
Alfio Quarteroni, Alberto Valli, Domain Decomposition Methods for Compressible Flows Error Control and Adaptivity in Scientific Computing. pp. 221- 245 ,(1999) , 10.1007/978-94-011-4647-0_11
Patrick R. Amestoy, Abdou Guermouche, Jean-Yves L’Excellent, Stéphane Pralet, Hybrid scheduling for the parallel solution of linear systems parallel computing. ,vol. 32, pp. 136- 156 ,(2006) , 10.1016/J.PARCO.2005.07.004