N-[3,5-Bis(trifluoromethyl)phenyl]-5-bromo-2-hydroxybenzamide Analogues: Novel Acetyl- and Butyrylcholinesterase Inhibitors.

作者: Martin Krátký , Karolína Jaklová , Šárka Štěpánková , Katarína Svrčková , Václav Pflégr

DOI: 10.2174/1568026620666200819154722

关键词:

摘要: BACKGROUND Development of acetyl- (AChE) and butyrylcholinesterase (BuChE) inhibitors belongs to viable strategies for the treatment dementia other diseases related decrease in cholinergic neurotransmission. OBJECTIVE That is why we designed twenty-two analogues a dual AChEBuChE salicylanilide inhibitor, N-[3,5-bis(trifluoromethyl)phenyl]-5-bromo-2-hydroxybenzamide 1, improve its potency. METHODS We prepared N,N-disubstituted (thio)carbamates via direct acylation with (thio)carbamoyl chloride, N-n-alkyl monosubstituted carbamates using isocyanates as well core analogues. The derivatives were evaluated vitro against AChE from electric eel BuChE equine serum spectrophotometric Ellman's method. RESULTS compounds showed moderate inhibition both IC50 18.2 196.6 μmol.L-1 9.2 196.2 μmol.L-1, respectively. Importantly, based on substitution pattern, it possible modulate selectivity or some also produced balanced inhibition. In general, most promising N-alkyl (C2-C6) isomers changed position phenolic hydroxyl. N-[3,5-Bis(trifluoromethyl)phenyl]-3-bromo-5- hydroxybenzamide 4a was best inhibitor cholinesterases. CONCLUSION A wide range improved activity hit they superior carbamate drug rivastigmine them BuChE. fit physicochemical space structural features CNS drugs together an escalated lipophilicity.

参考文章(32)
Rodrigo Medeiros, David Baglietto-Vargas, Frank M. LaFerla, The role of tau in Alzheimer's disease and related disorders. CNS Neuroscience & Therapeutics. ,vol. 17, pp. 514- 524 ,(2011) , 10.1111/J.1755-5949.2010.00177.X
Goran Šinko, Maja Čalić, Anita Bosak, Zrinka Kovarik, Limitation of the Ellman method: cholinesterase activity measurement in the presence of oximes. Analytical Biochemistry. ,vol. 370, pp. 223- 227 ,(2007) , 10.1016/J.AB.2007.07.023
Yoko Furukawa-Hibi, Tursun Alkam, Atsumi Nitta, Akihiro Matsuyama, Hiroyuki Mizoguchi, Kazuhiko Suzuki, Saliha Moussaoui, Qian-Sheng Yu, Nigel H. Greig, Taku Nagai, Kiyofumi Yamada, Butyrylcholinesterase inhibitors ameliorate cognitive dysfunction induced by amyloid-β peptide in mice Behavioural Brain Research. ,vol. 225, pp. 222- 229 ,(2011) , 10.1016/J.BBR.2011.07.035
Bradley D. Smith, DeeAnne M. Goodenough-Lashua, Carlisle J.E. D’Souza, Kieran J. Norton, Leslie M. Schmidt, James C. Tung, Substituent effects on the barrier to carbamate C–N rotation Tetrahedron Letters. ,vol. 45, pp. 2747- 2749 ,(2004) , 10.1016/J.TETLET.2004.02.037
Miroslav Pohanka, Alzheimer´s disease and oxidative stress: a review Current Medicinal Chemistry. ,vol. 21, pp. 356- 364 ,(2013) , 10.2174/09298673113206660258
Cristóbal de los Ríos, Cholinesterase inhibitors: a patent review (2007 - 2011). Expert Opinion on Therapeutic Patents. ,vol. 22, pp. 853- 869 ,(2012) , 10.1517/13543776.2012.701619
Pavla Zdražilová, Šárka Štĕpánková, Karel Komers, Karel Ventura, Alexander Čegan, Half-inhibition concentrations of new cholinesterase inhibitors. Zeitschrift für Naturforschung C. ,vol. 59, pp. 293- 296 ,(2004) , 10.1515/ZNC-2004-3-430
Nigel H. Greig, Debomoy K. Lahiri, TracyAnn Perry, Qian-sheng Yu, Xiaoxiang Zhu, Bong Lee, Harold W. Holloway, Donald K. Ingram, Tada Utsuki, A new therapeutic target in Alzheimer's disease treatment: attention to butyrylcholinesterase. Current Medical Research and Opinion. ,vol. 17, pp. 159- 165 ,(2001) , 10.1185/0300799039117057
Preet Anand, Baldev Singh, A review on cholinesterase inhibitors for Alzheimer’s disease Archives of Pharmacal Research. ,vol. 36, pp. 375- 399 ,(2013) , 10.1007/S12272-013-0036-3