Solving SCS for bounded length strings in fewer than 2n steps

作者: Alexander Golovnev , Alexander S. Kulikov , Ivan Mihajlin

DOI: 10.1016/J.IPL.2014.03.004

关键词:

摘要: Abstract It is still not known whether a shortest common superstring (SCS) of n input strings can be found faster than in O ⁎ ( 2 ) time ⋅ suppresses polynomial factors the length). In this short note, we show that for any constant r, SCS length at most r solved 1 − c where = + . For this, introduce so-called hierarchical graphs allow us to reduce on directed rural postman problem graph with k weakly connected components. One then use recent algorithm by Gutin, Wahlstrom, and Yeo.

参考文章(25)
Alexander Golovnev, Alexander S. Kulikov, Ivan Mihajlin, Solving 3-Superstring in 3 n/3 Time Mathematical Foundations of Computer Science 2013. pp. 480- 491 ,(2013) , 10.1007/978-3-642-40313-2_43
Nicos Christofides, V. Campos, A. Corberán, E. Mota, An algorithm for the Rural Postman problem on a directed graph Mathematical Programming Studies. pp. 155- 166 ,(1986) , 10.1007/BFB0121091
Gregory Z. Gutin, Magnus Wahlström, Anders Yeo, Parameterized Rural Postman and Conjoining Bipartite Matching Problems. ,(2013)
David Eppstein, Richard Beigel, 3-coloring in time O (1.3289 n ) Journal of Algorithms. ,vol. 54, pp. 168- 204 ,(2005) , 10.1016/J.JALGOR.2004.06.008
Mikko Koivisto, The Travelling Salesman Problem in Bounded Degree Graphs international colloquium on automata languages and programming. ,vol. 5125, pp. 198- 209 ,(2008) , 10.1007/978-3-540-70575-8_17
Michael Held, Richard M. Karp, A Dynamic Programming Approach to Sequencing Problems Journal of The Society for Industrial and Applied Mathematics. ,vol. 10, pp. 196- 210 ,(1962) , 10.1137/0110015
Richard Bellman, Dynamic Programming Treatment of the Travelling Salesman Problem Journal of the ACM. ,vol. 9, pp. 61- 63 ,(1962) , 10.1145/321105.321111
Samuel Kohn, Allan Gottlieb, Meryle Kohn, A generating function approach to the Traveling Salesman Problem Proceedings of the 1977 annual conference on - ACM '77. pp. 294- 300 ,(1977) , 10.1145/800179.810218
Richard M. Karp, Dynamic programming meets the principle of inclusion and exclusion Operations Research Letters. ,vol. 1, pp. 49- 51 ,(1982) , 10.1016/0167-6377(82)90044-X
A. S. Kulikov, K. Kutskov, New upper bounds for the problem of maximal satisfiability Discrete Mathematics and Applications. ,vol. 19, pp. 155- 172 ,(2009) , 10.1515/DMA.2009.009