Carleman type inequalities and Hardy type inequalities for monotone functions

作者: Maria Johansson

DOI:

关键词:

摘要: This Ph.D. thesis deals with various generalizations of the inequalities by Carleman, Hardy and Polya-Knopp. In Chapter 1 we give an introduction overview area that serves as a frame for ...

参考文章(83)
E. Sawyer, Boundedness of classical operators on classical Lorentz spaces Studia Mathematica. ,vol. 96, pp. 145- 158 ,(1990) , 10.4064/SM-96-2-145-158
Pavel Drábek, Hans P. Heinig, Alois Kufner, Higher dimensional Hardy inequality Birkhäuser, Basel. pp. 3- 16 ,(1997) , 10.1007/978-3-0348-8942-1_1
Benjamin Muckenhoupt, Hardy's inequality with weights Studia Mathematica. ,vol. 44, pp. 31- 38 ,(1972) , 10.4064/SM-44-1-31-38
Michael Ćwikel, Anna Kamińska, Lech Maligranda, Luboš Pick, Are generalized Lorentz spaces really spaces Proceedings of the American Mathematical Society. ,vol. 132, pp. 3615- 3625 ,(2004) , 10.1090/S0002-9939-04-07477-5
Vladimir D. Stepanov, The weighted Hardy’s inequality for nonincreasing functions Transactions of the American Mathematical Society. ,vol. 338, pp. 173- 186 ,(1993) , 10.1090/S0002-9947-1993-1097171-4
D. V. Prokhorov, Hardy's Inequality with Three Measures Proceedings of the Steklov Institute of Mathematics. ,vol. 255, pp. 221- 233 ,(2006) , 10.1134/S0081543806040183
Maria Johansson, Vladimir D. Stepanov, Elena P. Ushakova, HARDY INEQUALITY WITH THREE MEASURES ON MONOTONE FUNCTIONS Mathematical Inequalities & Applications. ,vol. 11, pp. 393- 413 ,(2008) , 10.7153/MIA-11-30
G. G. Lorentz, On the theory of spaces $\Lambda$. Pacific Journal of Mathematics. ,vol. 1, pp. 411- 429 ,(1951) , 10.2140/PJM.1951.1.411
Sorina Barza, Hans P Heinig, Lars-Erik Perssona, Duality theorem over the cone of monotone functions and sequences in higher dimensions Journal of Inequalities and Applications. ,vol. 2002, pp. 952945- ,(2002) , 10.1155/S1025583402000061
Dmitry V. Prokhorov, Inequalities of Hardy type for a class of integral operators with measures Analysis Mathematica. ,vol. 33, pp. 199- 225 ,(2007) , 10.1007/S10476-007-0302-Z