The Inverse-Cube Central Force Field in Quantum Mechanics

作者: George H. Shortley

DOI: 10.1103/PHYSREV.38.120

关键词:

摘要: The problem of the motion a particle in an inverse-cube central force field is fully treated by quantum mechanics and results compared with classical theory. Taking effective radial potential energy as $\frac{S}{{r}^{2}}$, although solutions for negative $0\ensuremath{\geqq}S\ensuremath{\geqq}\frac{\ensuremath{-}{h}^{2}}{32{\ensuremath{\pi}}^{2}\ensuremath{\mu}}$ satisfy usual boundary conditions, they can not be admitted because Hamiltonian Hermitian these solutions. This corresponds to taking ${(l+\frac{1}{2})}^{2}$ place $l(l+1)$ analogue square angular momentum. If we do this, get complete analogy between mechanically allowed solutions, no quantization. involve Bessel functions both real imaginary orders arguments.

参考文章(4)
Maxime Bocher, On Some Applications of Bessel's Functions with Pure Imaginary Index The Annals of Mathematics. ,vol. 6, pp. 137- ,(1892) , 10.2307/1967335
J. v. Neumann, Allgemeine Eigenwerttheorie Hermitescher Funktionaloperatoren Mathematische Annalen. ,vol. 102, pp. 49- 131 ,(1930) , 10.1007/BF01782338
R. M. Langer, N. Rosen, What Requirements must the Schrödingerψ-Function Satisfy? Physical Review. ,vol. 37, pp. 658- 658 ,(1931) , 10.1103/PHYSREV.37.658
George Jaff�, Welchen Forderungen muß die Schrödingersche ψ-Funktion genügen? European Physical Journal. ,vol. 66, pp. 770- 774 ,(1930) , 10.1007/BF01390800