Minimum domains for spatial patterns in a class of reaction diffusion equations.

作者: J. D. Murray , R. P. Sperb

DOI: 10.1007/BF00280665

关键词:

摘要: We study a general class of scalar reaction/interacting population diffusion equations in two space dimensions: convective terms, due to wind, are included. consider boundary conditions which include measure the hostility species exterior domain. The main point paper is obtain estimates for minimum domain size can sustain spatially heterogeneous structures and indicate type patterns could appear.

参考文章(14)
Richard Courant, David Hilbert, Methods of Mathematical Physics ,(1947)
René P. Sperb, Maximum principles and nonlinear elliptic problems Journal D Analyse Mathematique. ,vol. 35, pp. 236- 263 ,(1979) , 10.1007/BF02791067
René P. Sperb, Untere und obere Schranken für den tiefsten Eigenwert der elastisch gestützten Membran Zeitschrift für Angewandte Mathematik und Physik. ,vol. 23, pp. 231- 244 ,(1972) , 10.1007/BF01593087
D. Ludwig, D. G. Aronson, H. F. Weinberger, Spatial patterning of the spruce budworm Journal of Mathematical Biology. ,vol. 8, pp. 217- 258 ,(1979) , 10.1007/BF00276310
D. Ludwig, D. D. Jones, C. S. Holling, Qualitative Analysis of Insect Outbreak Systems: The Spruce Budworm and Forest The Journal of Animal Ecology. ,vol. 47, pp. 315- ,(1978) , 10.2307/3939
J.D. Murray, A Pre-pattern formation mechanism for animal coat markings Journal of Theoretical Biology. ,vol. 88, pp. 161- 199 ,(1981) , 10.1016/0022-5193(81)90334-9
Murray H. Protter, Hans F. Weinberger, Maximum principles in differential equations ,(1967)