Numerical solutions for the surface diusion ow in three space dimensions

作者: Uwe F. Mayer

DOI:

关键词:

摘要: The surface diusion ow is a moving boundary problem that has gradient structure, and this structure suggests an implicit nite-dierences approach to compute numerical solutions. resulting scheme allows the for any smooth orientable immersed initial surface. We provide analytical proof of construct discretization Laplacian scalar function on triangulated Then we describe scheme, conclude with several experiments.

参考文章(17)
Herbert Amann, Linear and Quasilinear Parabolic Problems Birkhäuser Basel. ,(1995) , 10.1007/978-3-0348-9221-6
Gieri Simonett, Joachim Escher, Uwe F. Mayer, ON THE SURFACE DIFFUSION FLOW ,(2000)
Y. Giga, K. Ito, On pinching of curves moved by surface diffusion Preprint Series of Department of Mathematics, Hokkaido University. ,vol. 379, pp. 1- 12 ,(1997)
H. Blaine Lawson, Lectures on minimal submanifolds ,(1980)
M. Gage, R. S. Hamilton, The heat equation shrinking convex plane curves Journal of Differential Geometry. ,vol. 23, pp. 69- 96 ,(1986) , 10.4310/JDG/1214439902
J. W. Cahn, C. M. Elliott, A. Novick-Cohen, The Cahn–Hilliard equation with a concentration dependent mobility: motion by minus the Laplacian of the mean curvature European Journal of Applied Mathematics. ,vol. 7, pp. 287- 301 ,(1996) , 10.1017/S0956792500002369
Bernard D. Coleman, Richard S. Falk, Maher Moakher, Stability of cylindrical bodies in the theory of surface diffusion Physica D: Nonlinear Phenomena. ,vol. 89, pp. 123- 135 ,(1995) , 10.1016/0167-2789(95)00261-8
Jean E. Taylor, John W. Cahn, Linking anisotropic sharp and diffuse surface motion laws via gradient flows Journal of Statistical Physics. ,vol. 77, pp. 183- 197 ,(1994) , 10.1007/BF02186838
Henry Wente, Counterexample to a conjecture of H. Hopf Pacific Journal of Mathematics. ,vol. 121, pp. 193- 243 ,(1986) , 10.2140/PJM.1986.121.193
W. W. Mullins, Theory of Thermal Grooving Journal of Applied Physics. ,vol. 28, pp. 333- 339 ,(1957) , 10.1063/1.1722742