Discriminant Functions When Covariance Matrices are Unequal

作者: Sidney Marks , Olive Jean Dunn

DOI: 10.1080/01621459.1974.10482992

关键词:

摘要: Abstract This study compares by Monte Carlo methods the performance of three discriminant functions in classifying individuals into two multivariate normally distributed populations when covariance matrices are unequal—the quadratic, best linear and Fisher's function. The comparison is carried out both asymptotically using samples. expected value probabilities used as measure performance. Parameters that varied include distance between populations, matrices, number dimensions, samples size a priori origin from populations.

参考文章(10)
T. W. Anderson, R. R. Bahadur, Classification into two Multivariate Normal Distributions with Different Covariance Matrices Annals of Mathematical Statistics. ,vol. 33, pp. 420- 431 ,(1962) , 10.1214/AOMS/1177704568
C. W. CLUNIES-ROSS, R. H. RIFFENBURGH, Geometry and linear discrimination Biometrika. ,vol. 47, pp. 185- 189 ,(1960) , 10.1093/BIOMET/47.1-2.185
Peter A. Lachenbruch, Cheryl Sneeringer, Lawrence T. Revo, Robustness of the linear and quadratic discriminant function to certain types of non‐normality Communications in Statistics. ,vol. 1, pp. 39- 56 ,(1973) , 10.1080/03610927308827006
Peter D. Welch, Richard S. Wimpress, Two Multivariate Statistical Computer Programs and Their Application to the Vowel Recognition Problem Journal of the Acoustical Society of America. ,vol. 33, pp. 426- 434 ,(1961) , 10.1121/1.1908683
CEDRIC A. B. SMITH, Some examples of discrimination. Annals of Human Genetics. ,vol. 13, pp. 272- 282 ,(1946) , 10.1111/J.1469-1809.1946.TB02368.X
William G. Madow, T. W. Anderson, Introduction to Multivariate Statistical Analysis. American Mathematical Monthly. ,vol. 66, pp. 432- ,(1959) , 10.2307/2308777
Robert H. Riffenburgh, Charles W. Clunies-Ross, Linear discriminant analysis University of Hawai'i Press. ,(1960)