Uniqueness Theorems for Inverse Gravimetric Problems

作者: D. Sampietro , F. Sansò

DOI: 10.1007/978-3-642-22078-4_17

关键词:

摘要: The inverse gravimetric problem, namely the determination of internal density distribution a body from exterior gravity field, is known to have very large indeterminacy while it well identified and described in functional terms. However, when models are strongly reduced simple classes, or subspaces, uniqueness property inversion retrieved. Uniqueness theorems proved for three cases Cartesian approximation: ∙ recovery interface between two layers laterally varying distribution, model, given geometry problem (topography depth compensation) vertical gradient density, at sea level.

参考文章(14)
M. Reguzzoni, D. Sampietro, An Inverse Gravimetric Problem with GOCE Data International Symposium on Gravity, Geoid and Earth Observation. pp. 451- 456 ,(2010) , 10.1007/978-3-642-10634-7_60
L. Ballani, D. Stromeyer, On the Structure of Uniqueness in Linear Inverse Source Source Problems Theory and Practice of Geophysical Data Inversion. pp. 85- 98 ,(1992) , 10.1007/978-3-322-89417-5_6
M. Lavrent′ev, V. Romanov, S. Shishatskii, Ill-Posed Problems of Mathematical Physics and Analysis Translations of Mathematical#N# Monographs. ,vol. 64, ,(1986) , 10.1090/MMONO/064
L. L. Nettleton, Geophysical prospecting for oil ,(1940)
Helmut Moritz, Advanced Physical Geodesy ,(1989)
Petr Vanicek, Nikolaos T. Christou, Geoid and its Geophysical Interpretations ,(1993)
E. Schock, On the asymptotic order of accuracy of Tikhonov regularization Journal of Optimization Theory and Applications. ,vol. 44, pp. 95- 104 ,(1984) , 10.1007/BF00934896
F. Sansò, R. Barzaghi, C. C. Tscherning, Choice of norm for the density distribution of the Earth Geophysical Journal International. ,vol. 87, pp. 123- 141 ,(1986) , 10.1111/J.1365-246X.1986.TB04550.X