Finite Elements for the Time Harmonic Maxwell’s Equations

作者: Daniele Boffi

DOI: 10.1007/978-3-642-55745-3_2

关键词:

摘要: We review the time harmonic Maxwell’s system and its approximation via finite element method. The problem under consideration is strictly related to so-called interior eigenproblem.

参考文章(22)
D. Boffi, L. Gastaldi, C. Chinosi, Approximation of the grad div Operator in Nonconvex Domains Cmes-computer Modeling in Engineering & Sciences. ,vol. 1, pp. 31- 44 ,(2000) , 10.3970/CMES.2000.001.191
Fumio Kikuchi, On a discrete compactness property for the Nedelec finite elements Journal of the Faculty of Science. University of Tokyo. Section IA. Mathematics. ,vol. 36, pp. 479- 490 ,(1989)
F. Brezzi, J. Rappaz, P. -A. Raviart, Finite dimensional approximation of nonlinear problems Numerische Mathematik. ,vol. 37, pp. 1- 28 ,(1981) , 10.1007/BF01395805
D. Boffi, P. Fernandes, L. Gastaldi, I. Perugia, Computational Models of Electromagnetic Resonators: Analysis of Edge Element Approximation SIAM Journal on Numerical Analysis. ,vol. 36, pp. 1264- 1290 ,(1999) , 10.1137/S003614299731853X
Peter Monk, A finite element method for approximating the time-harmonic Maxwell equations Numerische Mathematik. ,vol. 63, pp. 243- 261 ,(1992) , 10.1007/BF01385860
D. Boffi, A note on the de Rham complex and a discrete compactness property Applied Mathematics Letters. ,vol. 14, pp. 33- 38 ,(1999) , 10.1016/S0893-9659(00)00108-7
Daniele Boffi, Fortin operator and discrete compactness for edge elements Numerische Mathematik. ,vol. 87, pp. 229- 246 ,(2000) , 10.1007/S002110000182
J. C. Nedelec, Mixed finite elements in ℝ 3 Numerische Mathematik. ,vol. 35, pp. 315- 341 ,(1980) , 10.1007/BF01396415