New (3+1)-dimensional nonlinear evolution equations with mKdV equation constituting its main part: Multiple soliton solutions

作者: Abdul-Majid Wazwaz

DOI: 10.1016/J.CHAOS.2015.03.018

关键词:

摘要: Abstract In this work, we present two new (3+1)-dimensional nonlinear evolution equations where the modified KdV equation constituting its main part. We derive dispersive relation and phase shift for each model. determine multiple soliton solutions equation.

参考文章(23)
Jon Nimmo, Claire Gilson, 良吾 広田, 敦 永井, The direct method in soliton theory ,(2004)
Anjan Biswas, 1-soliton solution of the K(m,n) equation with generalized evolution Physics Letters A. ,vol. 372, pp. 4601- 4602 ,(2008) , 10.1016/J.PHYSLETA.2008.05.002
Leilei Wei, Xindong Zhang, Sunil Kumar, Ahmet Yildirim, A numerical study based on an implicit fully discrete local discontinuous Galerkin method for the time-fractional coupled Schrödinger system Computers & Mathematics With Applications. ,vol. 64, pp. 2603- 2615 ,(2012) , 10.1016/J.CAMWA.2012.07.004
Wen-Xiu Ma, Integrable couplings and matrix loop algebras NONLINEAR AND MODERN MATHEMATICAL PHYSICS: Proceedings of the 2nd International Workshop. ,vol. 1562, pp. 105- 122 ,(2013) , 10.1063/1.4828687
Abdul-Majid Wazwaz, Solitons and singular solitons for the Gardner–KP equation Applied Mathematics and Computation. ,vol. 204, pp. 162- 169 ,(2008) , 10.1016/J.AMC.2008.06.011
Abdul-Majid Wazwaz, A variety of distinct kinds of multiple soliton solutions for a ( 3 + 1)‐dimensional nonlinear evolution equation Mathematical Methods in The Applied Sciences. ,vol. 36, pp. 349- 357 ,(2013) , 10.1002/MMA.2600