On the number of types in sparse graphs

作者: Michał Pilipczuk , Sebastian Siebertz , Szymon Toruńczyk

DOI: 10.1145/3209108.3209178

关键词:

摘要: We prove that for every class of graphs l which is nowhere dense, as defined by Nesetril and Ossona de Mendez [28, 29], first order formula φ(x, y), whenever one draws a graph G ∈ subset its nodes A, the number subsets A|y| are form {u A|y|: |= φ(u, v)} some valuation u x in bounded O(|A||x|e), e > 0. This provides optimal bounds on VC-density first-order definable set systems dense classes. also give two new proofs upper quantities classes relevant their logical treatment. Firstly, we provide proof fact uniformly quasi-wide, implying explicit, polynomial functions relating notions. Secondly, combinatorial result Adler [1] stating stable. In contrast to previous above results, our completely finitistic constructive, yield explicit computable related uniform quasi-wideness (margins) stability (ladder indices).

参考文章(40)
Zoltán Füredi, János Pach, Traces of finite sets: extremal problems and geometric applications Extremal Problems for Finite Sets. pp. 251- 282 ,(1994)
Nicolas Bousquet, Stéphan Thomassé, VC-dimension and Erdős-Pósa property Discrete Mathematics. ,vol. 338, pp. 2302- 2317 ,(2015) , 10.1016/J.DISC.2015.05.026
Katrin Tent, Martin Ziegler, A Course in Model Theory ,(2012)
A. A. Ivanov, The structure of superilat graphs Fundamenta Mathematicae. ,vol. 143, pp. 107- 117 ,(1993)
Haim Gaifman, On Local and Non-Local Properties Proceedings of the Herbrand Symposium. ,vol. 107, pp. 105- 135 ,(1982) , 10.1016/S0049-237X(08)71879-2
Jiří MatouŠek, Geometric Set Systems Birkhäuser, Basel. pp. 1- 27 ,(1998) , 10.1007/978-3-0348-8898-1_1
Patrice Ossona de Mendez, Jaroslav Neetil, Sparsity: Graphs, Structures, and Algorithms ,(2012)
Martin Kreidler, Detlef Seese, Monadic NP and Graph Minors computer science logic. pp. 126- 141 ,(1998) , 10.1007/10703163_9
N Sauer, On the density of families of sets Journal of Combinatorial Theory, Series A. ,vol. 13, pp. 145- 147 ,(1972) , 10.1016/0097-3165(72)90019-2
M. Malliaris, S. Shelah, Regularity lemmas for stable graphs Transactions of the American Mathematical Society. ,vol. 366, pp. 1551- 1585 ,(2013) , 10.1090/S0002-9947-2013-05820-5