The Tamed Unadjusted Langevin Algorithm

作者: Nicolas Brosse , Alain Durmus , Éric Moulines , Sotirios Sabanis

DOI: 10.1016/J.SPA.2018.10.002

关键词:

摘要: In this article, we consider the problem of sampling from a probability measure π having density on R d known up to normalizing constant, $x → e −U (x) / (y) dy$. The Euler discretization Langevin stochastic differential equation (SDE) is be unstable in precise sense, when potential U superlinear, i.e. lim inf $x→+∞ x = +∞$. Based previous works taming superlinear drift coefficients for SDEs, introduce Tamed Unadjusted Algorithm (TULA) and obtain non-asymptotic bounds V-total variation norm Wasserstein distance order 2 between iterates TULA π, as well weak error bounds. Numerical experiments are presented which support our findings.

参考文章(34)
A. N Shiryayev, R. S Liptser, Statistics of Random Processes I: General Theory ,(1984)
Cédric Villani, Optimal Transport: Old and New ,(2016)
Michel Ledoux, Michel Ledoux, Ivan Gentil, Dominique Bakry, Dominique Bakry, Analysis and Geometry of Markov Diffusion Operators ,(2016)
Ulf Grenander, Michael I. Miller, Representations of Knowledge in Complex Systems Journal of the Royal Statistical Society: Series B (Methodological). ,vol. 56, pp. 549- 581 ,(1994) , 10.1111/J.2517-6161.1994.TB02000.X
G. Parisi, Correlation functions and computer simulations Nuclear Physics. ,vol. 205, pp. 378- 384 ,(1981) , 10.1016/0550-3213(81)90056-0
Desmond J. Higham, Xuerong Mao, Andrew M. Stuart, Strong Convergence of Euler-Type Methods for Nonlinear Stochastic Differential Equations SIAM Journal on Numerical Analysis. ,vol. 40, pp. 1041- 1063 ,(2002) , 10.1137/S0036142901389530
Gareth O. Roberts, Richard L. Tweedie, Exponential convergence of Langevin distributions and their discrete approximations Bernoulli. ,vol. 2, pp. 341- 363 ,(1996) , 10.2307/3318418
A. Yu. Veretennikov, E. Pardoux, On the poisson equation and diffusion approximation 3 Annals of Probability. ,vol. 33, pp. 1111- 1133 ,(2001) , 10.1214/009117905000000062
Sean P. Meyn, R. L. Tweedie, STABILITY OF MARKOVIAN PROCESSES III: FOSTER- LYAPUNOV CRITERIA FOR CONTINUOUS-TIME PROCESSES Advances in Applied Probability. ,vol. 25, pp. 518- 548 ,(1993) , 10.2307/1427522