Cartesian differential invariants in scale-space

作者: L. M. J. Florack , B. M. Ter Haar Romeny , J. J. Koenderink , M. A. Viergever

DOI: 10.1007/BF01664793

关键词:

摘要: We present a formalism for studying local image structure in systematic, coordinate-independent, and robust way, based on scale-space theory, tensor calculus, the theory of invariants. concentrate ondifferential The is general applicability to analysis grey-tone images various modalities, defined aD-dimensional spatial domain. propose “diagrammar” differential invariants tensors, i.e., diagrammatic representation derivatives together with set simple rules representing meaningful properties. All properties given level inner scale can be represented terms such diagrams, and, vice versa, all diagrams represent coordinate-independent combinations derivatives, true presentcomplete andirreducible sets (nonpolynomial) appropriate description up any desired order. Any invariant expressed ofpolynomial invariants, pictorially by closed diagrams. Here we consider complete, irreducible polynomial second order (inclusive). Examples fourth (inclusive), calculated synthetic, noiseperturbed, 2-dimensional test images, are included illustrate main theory.

参考文章(38)
L.M.J. Florack, B.M. ter Haar Romeny, J.J. Koenderink, M.A. Viergever, General Intensity Transformations and Second Order Invariants WORLD SCIENTIFIC. pp. 22- 29 ,(1992) , 10.1142/9789812797896_0003
Luc J. Van Gool, Michael H. Brill, Eric Pauwels, Eamon B. Barrett, Theo Moons, Semi-differential invariants for nonplanar curves Geometric invariance in computer vision. pp. 293- 309 ,(1992)
Bart M. ter Haar Romeny, Luc M. J. Florack, Jan J. Koenderink, Max A. Viergever, Scale-Space: Its Natural Operators and Differential Invariants information processing in medical imaging. pp. 239- 255 ,(1991) , 10.1007/BFB0033757
Hermann Weyl, The Classical Groups The Mathematical Gazette. ,vol. 24, pp. 216- ,(1947) , 10.1515/9781400883905
Luc M. J. Florack, Bart M. ter Haar Romeny, Jan J. Koenderink, Max A. Viergever, Images: Regular Tempered Distributions Springer, Berlin, Heidelberg. pp. 651- 659 ,(1994) , 10.1007/978-3-662-03039-4_48
Joseph P. S. Kung, Gian-Carlo Rota, The invariant theory of binary forms Bulletin of the American Mathematical Society. ,vol. 10, pp. 27- 85 ,(1984) , 10.1090/S0273-0979-1984-15188-7