Method for the Analysis of Multicomponent Exponential Decay Curves

作者: Donald G. Gardner , Jeanne C. Gardner , George Laush , W. Wayne Meinke

DOI: 10.1063/1.1730560

关键词:

摘要: A frequently encountered problem in many branches of science involves the resolution experimental data into a sum independent exponential curves form f(t)= ∑ i=1nNiexp(−λit), order to estimate physically significant parameters Ni and λi. Such problems arise, for example, analysis multicomponent radioactive decay curves, study dielectric properties certain compounds. This paper is concerned with numerical evaluation mathematical approach problem. The based on inversion Laplace integral equation by method Fourier transforms. results appear frequency spectrum. Each true peak spectrum indicates component, abscissa value at center constant λi, while height directly proportional Ni/λi. Results obtained an IBM 650 computer indicate that may possess advantages over previous methods analysis.

参考文章(5)
W. N. Bailey, E. C. Titchmarsh, Introduction to the theory of Fourier integrals The Mathematical Gazette. ,vol. 22, pp. 85- ,(1938) , 10.2307/3607457
Norbert Wiener, Raymond Edward Alan Christopher Paley, Fourier Transforms in the Complex Domain ,(1934)
G. E. Hudson, Trend Analysis of Physical Data American Journal of Physics. ,vol. 21, pp. 362- 367 ,(1953) , 10.1119/1.1933451
Roland Bulirsch, Josef Stoer, Introduction To Numerical Analysis ,(1956)
L. N. G. Filon, III.—On a Quadrature Formula for Trigonometric Integrals. Proceedings of the Royal Society of Edinburgh. ,vol. 49, pp. 38- 47 ,(1930) , 10.1017/S0370164600026262