Statistical analysis of MPSS measurements: Application to the study of LPS-activated macrophage gene expression

作者: G. A. Stolovitzky , A. Kundaje , G. A. Held , K. H. Duggar , C. D. Haudenschild

DOI: 10.1073/PNAS.0406555102

关键词:

摘要: Massively Parallel Signature Sequencing (MPSS), a recently developed high-throughput transcription profiling technology, has the ability to profile almost every transcript in sample without requiring prior knowledge of sequence transcribed genes. As is case with DNA microarrays, effective data analysis depends crucially on understanding how noise affects measurements. We analyze sources MPSS and present quantitative model describing variability between replicate assays. use this construct statistical hypotheses that test whether an observed change gene expression pair-wise comparison significant. This then extended determination significance changes levels measured over course time series apply these analytic techniques study measurements LPS-stimulated macrophages. To evaluate our metrics, we compare results published macrophage activation by using Affymetrix GeneChips.

参考文章(20)
Ricardo ZN Vêncio, Helena Brentani, Diogo FC Patrão, Carlos AB Pereira, Bayesian model accounting for within-class biological variability in Serial Analysis of Gene Expression (SAGE). BMC Bioinformatics. ,vol. 5, pp. 119- 119 ,(2004) , 10.1186/1471-2105-5-119
Marina Bakay, Yi-Wen Chen, Rehannah Borup, Po Zhao, Kanneboyina Nagaraju, Eric P Hoffman, Sources of variability and effect of experimental approach on expression profiling data interpretation BMC Bioinformatics. ,vol. 3, pp. 4- 4 ,(2002) , 10.1186/1471-2105-3-4
Vigdis Nygaard, Anders Løland, Marit Holden, Mette Langaas, Håvard Rue, Fang Liu, Ola Myklebost, Øystein Fodstad, Eivind Hovig, Birgitte Smith-Sørensen, Effects of mRNA amplification on gene expression ratios in cDNA experiments estimated by analysis of variance. BMC Genomics. ,vol. 4, pp. 11- 11 ,(2003) , 10.1186/1471-2164-4-11
Patrick O. Brown, David Botstein, Exploring the new world of the genome with DNA microarrays Nature Genetics. ,vol. 21, pp. 33- 37 ,(1999) , 10.1038/4462
G. J. Nau, J. F. L. Richmond, A. Schlesinger, E. G. Jennings, E. S. Lander, R. A. Young, Human macrophage activation programs induced by bacterial pathogens Proceedings of the National Academy of Sciences of the United States of America. ,vol. 99, pp. 1503- 1508 ,(2002) , 10.1073/PNAS.022649799
Y. Tu, G. Stolovitzky, U. Klein, Quantitative noise analysis for gene expression microarray experiments Proceedings of the National Academy of Sciences of the United States of America. ,vol. 99, pp. 14031- 14036 ,(2002) , 10.1073/PNAS.222164199
Saurabh Saha, Andrew B. Sparks, Carlo Rago, Viatcheslav Akmaev, Clarence J. Wang, Bert Vogelstein, Kenneth W. Kinzler, Victor E. Velculescu, Using the transcriptome to annotate the genome. Nature Biotechnology. ,vol. 20, pp. 508- 512 ,(2002) , 10.1038/NBT0502-508
V. E. Velculescu, L. Zhang, B. Vogelstein, K. W. Kinzler, Serial analysis of gene expression Science. ,vol. 270, pp. 484- 487 ,(2000) , 10.1126/SCIENCE.270.5235.484
Sydney Brenner, Maria Johnson, John Bridgham, George Golda, David H. Lloyd, Davida Johnson, Shujun Luo, Sarah McCurdy, Michael Foy, Mark Ewan, Rithy Roth, Dave George, Sam Eletr, Glenn Albrecht, Eric Vermaas, Steven R. Williams, Keith Moon, Timothy Burcham, Michael Pallas, Robert B. DuBridge, James Kirchner, Karen Fearon, Jen-i Mao, Kevin Corcoran, Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays Nature Biotechnology. ,vol. 18, pp. 630- 634 ,(2000) , 10.1038/76469
Shuguang Huang, Hui-Rong Qian, Chad Geringer, Christy Love, Lawrence Gelbert, Kerry Bemis, Assessing the variability in GeneChip data. American Journal of Pharmacogenomics. ,vol. 3, pp. 279- 290 ,(2003) , 10.2165/00129785-200303040-00005