Improving Hospital Mortality Prediction with Medical Named Entities and Multimodal Learning

作者: Mohammed Khalilia , Mohammad Taha Bahadori , Taha A. Kass-Hout , Parminder Bhatia , Borui Zhang

DOI:

关键词:

摘要: Clinical text provides essential information to estimate the acuity of a patient during hospital stays in addition structured clinical data. In this study, we explore how can complement predictive learning task. We leverage an internal medical natural language processing service perform named entity extraction and negation detection on notes compose selected entities into new corpus train document representations. then propose multimodal neural network jointly time series signals unstructured representations predict in-hospital mortality risk for ICU patients. Our model outperforms benchmark by 2% AUC.

参考文章(19)
Peter Szolovits, David A. Clifton, Marzyeh Ghassemi, Marco A. F. Pimentel, Mengling Feng, Tristan Naumann, Thomas Brennan, A multivariate timeseries modeling approach to severity of illness assessment and forecasting in ICU with sparse, heterogeneous clinical data national conference on artificial intelligence. ,vol. 2015, pp. 446- 453 ,(2015)
Charles Elkan, Zachary C. Lipton, David C. Kale, Randall Wetzel, Learning to Diagnose with LSTM Recurrent Neural Networks arXiv: Learning. ,(2015)
Ruslan R Salakhutdinov, Nitish Srivastava, Multimodal Learning with Deep Boltzmann Machines neural information processing systems. ,vol. 25, pp. 2222- 2230 ,(2012)
Aditya Khosla, Andrew Y. Ng, Honglak Lee, Jiquan Ngiam, Juhan Nam, Mingyu Kim, Multimodal Deep Learning international conference on machine learning. pp. 689- 696 ,(2011)
Geoffrey Hinton, Laurens van der Maaten, Visualizing Data using t-SNE Journal of Machine Learning Research. ,vol. 9, pp. 2579- 2605 ,(2008)
Alistair E.W. Johnson, Tom J. Pollard, Lu Shen, Li-wei H. Lehman, Mengling Feng, Mohammad Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, Roger G. Mark, MIMIC-III, a freely accessible critical care database Scientific Data. ,vol. 3, pp. 160035- 160035 ,(2016) , 10.1038/SDATA.2016.35
Riccardo Miotto, Li Li, Brian A. Kidd, Joel T. Dudley, Deep Patient: An Unsupervised Representation to Predict the Future of Patients from the Electronic Health Records Scientific Reports. ,vol. 6, pp. 26094- 26094 ,(2016) , 10.1038/SREP26094
Jey Han Lau, Timothy Baldwin, An Empirical Evaluation of doc2vec with Practical Insights into Document Embedding Generation arXiv: Computation and Language. ,(2016)
A Rumshisky, M Ghassemi, T Naumann, P Szolovits, V M Castro, T H McCoy, R H Perlis, Predicting early psychiatric readmission with natural language processing of narrative discharge summaries Translational Psychiatry. ,vol. 6, ,(2016) , 10.1038/TP.2015.182
Greg Ver Steeg, Hrant Khachatrian, David C. Kale, Aram Galstyan, Hrayr Harutyunyan, Multitask learning and benchmarking with clinical time series data. arXiv: Machine Learning. ,(2017) , 10.1038/S41597-019-0103-9