Discovering Process Models from Unlabelled Event Logs

作者: Diogo R. Ferreira , Daniel Gillblad

DOI: 10.1007/978-3-642-03848-8_11

关键词:

摘要: Existing process mining techniques are able to discover models from event logs where each is known have been produced by a given instance. In this paper we remove restriction and address the problem of discovering model when log provided as an unlabelled stream events. Using probabilistic approach, it possible estimate means iterative Expectaction---Maximization procedure. The same procedure can be used find case id in logs. A series experiments show how proposed technique performs under varying conditions presence certain workflow patterns. Results presented for running example based on technical support process.

参考文章(16)
W.M.P. van der Aalst, A.K. Alves De Medeiros, B.F. van Dongen, A.J.M.M. Weijters, Process mining : extending the alpha-algorithm to mine short loops Technische Universiteit Eindhoven. ,vol. 113, ,(2004)
Diogo Ferreira, Marielba Zacarias, Miguel Malheiros, Pedro Ferreira, Approaching process mining with sequence clustering: experiments and findings business process management. pp. 360- 374 ,(2007) , 10.1007/978-3-540-75183-0_26
Arthur ter Hofstede, Wil MP van der Aalst, Arthur HM ter Hofstede, Mathias Weske, Business process management: a survey business process management. pp. 1- 12 ,(2003) , 10.1007/3-540-44895-0_1
Jonathan E. Cook, Zhidian Du, Chongbing Liu, Alexander L. Wolf, Discovering models of behavior for concurrent workflows Computers in Industry. ,vol. 53, pp. 297- 319 ,(2004) , 10.1016/J.COMPIND.2003.10.005
A. P. Dempster, N. M. Laird, D. B. Rubin, Maximum Likelihood from Incomplete Data Via theEMAlgorithm Journal of the Royal Statistical Society: Series B (Methodological). ,vol. 39, pp. 1- 22 ,(1977) , 10.1111/J.2517-6161.1977.TB01600.X
A. Rozinat, W.M.P. van der Aalst, Conformance checking of processes based on monitoring real behavior Information Systems. ,vol. 33, pp. 64- 95 ,(2008) , 10.1016/J.IS.2007.07.001
B. F. van Dongen, A. K. A. de Medeiros, H. M. W. Verbeek, A. J. M. M. Weijters, W. M. P. van der Aalst, The ProM Framework: A New Era in Process Mining Tool Support Applications and Theory of Petri Nets 2005. pp. 444- 454 ,(2005) , 10.1007/11494744_25
W. van der Aalst, T. Weijters, L. Maruster, Workflow mining: discovering process models from event logs IEEE Transactions on Knowledge and Data Engineering. ,vol. 16, pp. 1128- 1142 ,(2004) , 10.1109/TKDE.2004.47
A. K. A. de Medeiros, A. J. M. M. Weijters, W. M. P. van der Aalst, Genetic process mining: an experimental evaluation Data Mining and Knowledge Discovery. ,vol. 14, pp. 245- 304 ,(2007) , 10.1007/S10618-006-0061-7