Evaluation of a statistical forecast model for size-fractionated urban particle number concentrations using data from five European cities

作者: Bjarke Mølgaard , Wolfram Birmili , Sam Clifford , Andreas Massling , Kostas Eleftheriadis

DOI: 10.1016/J.JAEROSCI.2013.08.012

关键词:

摘要: In this study we evaluated a forecast model for urban aerosol number concentrations against measurements made at five European cities: Helsinki, Stockholm, Copenhagen, Leipzig, and Athens. This requires learning data set with particle concentrations, traffic densities local meteorology. Additionally, in the forecasting process it same parameters from past week forecasted values of weather traffic. The performance was tested based on R2, index agreement (IA), mean square error (MSE), bias. We three modelling approaches: one fixed parameterisation two optimisations either Deviance or Akaike Information Criterion. Based hourly one-day forecasts background sites IA ranged 0.65 to 0.80 accumulation mode particles 0.68 0.87 ultrafine particles. best Helsinki Stockholm worst Leipzig Copenhagen. main reason is more pronounced diurnal variation Stockholm. Another that Copenhagen were not as complete other cities. approaches yielded similar performances, hence conclude simplest parametrisation be preferred.

参考文章(65)
FRANK J. KELLY, GARY W. FULLER, HEATHER A. WALTON, JULIA C. FUSSELL, Monitoring air pollution: Use of early warning systems for public health Respirology. ,vol. 17, pp. 7- 19 ,(2012) , 10.1111/J.1440-1843.2011.02065.X
W. Birmili, J. Cyrys, L. Ries, A. Wiedensohler, H. Flentje, M. Pitz, K. Weinhold, K. Müller, K. Wirtz, T. Gnauk, S. Mertes, H. Herrmann, S. Nordmann, Atmospheric aerosol measurements in the German Ultrafine Aerosol Network (GUAN) ,(2009)
D.B. Kittelson, W.F. Watts, J.P. Johnson, J.J. Schauer, D.R. Lawson, On-road and laboratory evaluation of combustion aerosols—Part 2:: Summary of spark ignition engine results Journal of Aerosol Science. ,vol. 37, pp. 931- 949 ,(2006) , 10.1016/J.JAEROSCI.2005.08.008
Siddhartha Chib, Bayes regression with autoregressive errors : A Gibbs sampling approach Journal of Econometrics. ,vol. 58, pp. 275- 294 ,(1993) , 10.1016/0304-4076(93)90046-8
Bjarke Mølgaard, Tareq Hussein, Jukka Corander, Kaarle Hämeri, Forecasting size-fractionated particle number concentrations in the urban atmosphere Atmospheric Environment. ,vol. 46, pp. 155- 163 ,(2012) , 10.1016/J.ATMOSENV.2011.10.004
Lovro Hrust, Zvjezdana Bencetić Klaić, Josip Križan, Oleg Antonić, Predrag Hercog, Neural network forecasting of air pollutants hourly concentrations using optimised temporal averages of meteorological variables and pollutant concentrations Atmospheric Environment. ,vol. 43, pp. 5588- 5596 ,(2009) , 10.1016/J.ATMOSENV.2009.07.048
Matteo Carpentieri, Prashant Kumar, Ground-fixed and on-board measurements of nanoparticles in the wake of a moving vehicle Atmospheric Environment. ,vol. 45, pp. 5837- 5852 ,(2011) , 10.1016/J.ATMOSENV.2011.06.079
A CHELANI, S DEVOTTA, Air quality forecasting using a hybrid autoregressive and nonlinear model Atmospheric Environment. ,vol. 40, pp. 1774- 1780 ,(2006) , 10.1016/J.ATMOSENV.2005.11.019
K. P. Moustris, P. T. Nastos, I. K. Larissi, A. G. Paliatsos, Application of Multiple Linear Regression Models and Artificial Neural Networks on the Surface Ozone Forecast in the Greater Athens Area, Greece Advances in Meteorology. ,vol. 2012, pp. 1- 8 ,(2012) , 10.1155/2012/894714
Matthias Ketzel, Ruwim Berkowicz, Multi-plume aerosol dynamics and transport model for urban scale particle pollution Atmospheric Environment. ,vol. 39, pp. 3407- 3420 ,(2005) , 10.1016/J.ATMOSENV.2005.01.058