Functional clustering for Italian climate zones identification

作者: E. Di Giuseppe , G. Jona Lasinio , S. Esposito , M. Pasqui

DOI: 10.1007/S00704-012-0801-0

关键词:

摘要: This work presents a functional clustering procedure applied to meteorological time series. Our proposal combines series interpolation with smoothing penalized B-spline and the partitioning around medoids algorithm. final goal is obtain homogeneous climate zones of Italy. We compare this approach standard methods based on combination principal component analysis Cluster Analysis (CA) we discuss it in relation other approaches Fourier CA. show that simpler than from methodological interpretability point view. Indeed, becomes natural find clear connection between mathematical results physical variability mechanisms. how choice basis expansion (splines, Fourier) affects propose some comments their use. The for classification formed by monthly values temperature precipitation recorded during period 1971–2000 over 95 94 Italian monitoring stations, respectively. An assessment climatic patterns presented prove consistency comparison obtained different used judge data approach.

参考文章(27)
G. E. P. Box, D. R. Cox, An Analysis of Transformations Journal of the Royal Statistical Society: Series B (Methodological). ,vol. 26, pp. 211- 243 ,(1964) , 10.1111/J.2517-6161.1964.TB00553.X
Finding Groups in Data John Wiley & Sons, Inc.. ,(1990) , 10.1002/9780470316801
Rudolph W. Preisendorfer, Curtis D. Mobley, Principal Component Analysis in Meteorology and Oceanography ,(1988)
Ricardo Trigo, Elena Xoplaki, Eduardo Zorita, Jürg Luterbacher, Simon O. Krichak, Pinhas Alpert, Jucundus Jacobeit, Jon Sáenz, Jesús Fernández, Fidel González-Rouco, Ricardo Garcia-Herrera, Xavier Rodo, Michele Brunetti, Teresa Nanni, Maurizio Maugeri, Mura Türke§, Luis Gimeno, Pedro Ribera, Manola Brunet, Isabel F. Trigo, Michel Crepon, Annarita Mariotti, Chapter 3 Relations between variability in the Mediterranean region and mid-latitude variability Developments in Earth and Environmental Sciences. ,vol. 4, pp. 179- 226 ,(2006) , 10.1016/S1571-9197(06)80006-6
Bernard W. Silverman, James O. Ramsay, Applied Functional Data Analysis: Methods and Case Studies ,(2002)
J. A. Hartigan, M. A. Wong, A K-Means Clustering Algorithm Journal of The Royal Statistical Society Series C-applied Statistics. ,vol. 28, pp. 100- 108 ,(1979) , 10.2307/2346830
Peter J. Rousseeuw, Silhouettes: a graphical aid to the interpretation and validation of cluster analysis Journal of Computational and Applied Mathematics. ,vol. 20, pp. 53- 65 ,(1987) , 10.1016/0377-0427(87)90125-7
A. P. Reynolds, G. Richards, B. de la Iglesia, V. J. Rayward-Smith, Clustering Rules: A Comparison of Partitioning and Hierarchical Clustering Algorithms Journal of Mathematical Modelling and Algorithms. ,vol. 5, pp. 475- 504 ,(2006) , 10.1007/S10852-005-9022-1
Michael B. Richman, Rotation of principal components International Journal of Climatology. ,vol. 6, pp. 293- 335 ,(1986) , 10.1002/JOC.3370060305
R. Ignaccolo, S. Ghigo, E. Giovenali, Analysis of air quality monitoring networks by functional clustering Environmetrics. ,vol. 19, pp. 672- 686 ,(2008) , 10.1002/ENV.946