Laver and set theory

作者: Akihiro Kanamori

DOI: 10.1007/S00153-015-0462-7

关键词:

摘要: In this commemorative article, the work of Richard Laver is surveyed in its full range and extent.

参考文章(114)
Stevo Todorčevič, Reals and Positive Partition Relations Studies in Logic and the Foundations of Mathematics. ,vol. 114, pp. 159- 169 ,(1986) , 10.1016/S0049-237X(09)70691-3
J. Baumgartner, A. Hajnal, A proof (involving Martin's axiom) of a partition relation Fundamenta Mathematicae. ,vol. 78, pp. 193- 203 ,(1973) , 10.4064/FM-78-3-193-203
Tetsuya Ishiu, Justin Tatch Moore, Minimality of non-sigma-scattered orders Fundamenta Mathematicae. ,vol. 205, pp. 29- 44 ,(2009) , 10.4064/FM205-1-2
Richard Laver, A division algorithm for the free left distributive algebra arXiv: Logic. pp. 155- 162 ,(1993)
James Cummings, Souslin trees which are hard to specialise Proceedings of the American Mathematical Society. ,vol. 125, pp. 2435- 2441 ,(1997) , 10.1090/S0002-9939-97-03796-9
H. G. Dales, W. H. Woodin, An Introduction to Independence for Analysts ,(1987)
W. Hugh Woodin, The continuum hypothesis, the generic-multiverse of sets, and the Ω conjecture Set Theory, Arithmetic, and Foundations of Mathematics. pp. 13- 42 ,(2011) , 10.1017/CBO9780511910616.003
Joan Bagaria, Joel David Hamkins, Konstantinos Tsaprounis, Toshimichi Usuba, Superstrong and other large cardinals are never Laver indestructible Archive for Mathematical Logic. ,vol. 55, pp. 19- 35 ,(2016) , 10.1007/S00153-015-0458-3
Richard Laver, Adding Dominating Functions Mod Finite Periodica Mathematica Hungarica. ,vol. 35, pp. 35- 41 ,(1997) , 10.1023/A:1004392507990