Multi relaxation time lattice Boltzmann simulations of deep lid driven cavity flows at different aspect ratios

作者: Li-Song Lin , Yi-Cheng Chen , Chao-An Lin

DOI: 10.1016/J.COMPFLUID.2010.12.012

关键词:

摘要: Abstract In this paper, the multi relaxation time (MRT) lattice Boltzmann equation (LBE) was used to compute lid driven cavity flows at different Reynolds numbers (100–7500) and aspect ratios (1–4 width depth). Steady solutions were obtained for square flows, however deep 1.5 4 depth, unsteady prevail Re = 7500, where periodic flow exists manifested by rapid changes of shapes locations corner vortices in strong contrast stationary primary vortex. The merger bottom into a vortex reemergence as number increases are more evident flows. For four depth cavity, predicted MRT model beyond 1000, which not previous single (SRT) BGK LBE model, verified complementary Navier–Stokes simulations. Also, is suitable parallel computations than its counterpart, due intense local procedure.

参考文章(25)
Y. H Qian, D D'Humières, P Lallemand, Lattice BGK Models for Navier-Stokes Equation EPL. ,vol. 17, pp. 479- 484 ,(1992) , 10.1209/0295-5075/17/6/001
Chih-Hao Liu, Kuen-Hau Lin, Hao-Chueh Mai, Chao-An Lin, Thermal boundary conditions for thermal lattice Boltzmann simulations Computers & Mathematics With Applications. ,vol. 59, pp. 2178- 2193 ,(2010) , 10.1016/J.CAMWA.2009.08.043
D.V. Patil, K.N. Lakshmisha, B. Rogg, Lattice Boltzmann simulation of lid-driven flow in deep cavities Computers & Fluids. ,vol. 35, pp. 1116- 1125 ,(2006) , 10.1016/J.COMPFLUID.2005.06.006
U Ghia, K.N Ghia, C.T Shin, High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method Journal of Computational Physics. ,vol. 48, pp. 387- 411 ,(1982) , 10.1016/0021-9991(82)90058-4
Shuling Hou, Qisu Zou, Shiyi Chen, Gary Doolen, Allen C. Cogley, Simulation of Cavity Flow by the Lattice Boltzmann Method Journal of Computational Physics. ,vol. 118, pp. 329- 347 ,(1995) , 10.1006/JCPH.1995.1103
Xiaoyi He, Qisu Zou, On pressure and velocity boundary conditions for the lattice Boltzmann BGK model Physics of Fluids. ,vol. 9, pp. 1591- 1598 ,(1997) , 10.1063/1.869307
Sadatoshi Taneda, Visualization of Separating Stokes Flows Journal of the Physical Society of Japan. ,vol. 46, pp. 1935- 1942 ,(1979) , 10.1143/JPSJ.46.1935
Huidan Yu, Li-Shi Luo, Sharath S. Girimaji, LES of turbulent square jet flow using an MRT lattice Boltzmann model Computers & Fluids. ,vol. 35, pp. 957- 965 ,(2006) , 10.1016/J.COMPFLUID.2005.04.009
Cheng Chang, Chih-Hao Liu, Chao-An Lin, Boundary conditions for lattice Boltzmann simulations with complex geometry flows Computers & Mathematics With Applications. ,vol. 58, pp. 940- 949 ,(2009) , 10.1016/J.CAMWA.2009.02.016
Chen-Hao Wang, Jeng-Rong Ho, Lattice Boltzmann modeling of Bingham plastics Physica A-statistical Mechanics and Its Applications. ,vol. 387, pp. 4740- 4748 ,(2008) , 10.1016/J.PHYSA.2008.04.008