Perfect r -domination in the Kronecker product of two cycles, with an application to diagonal/toroidal mesh

作者: Pranava K. Jha

DOI: 10.1016/S0020-0190(03)00268-0

关键词:

摘要: If r ≥ 1, and m n are each a multiple of (r + 1)2 r2, then isomorphic component Cm × Cn admits vertex partition into r2 perfect r-dominating sets. The result induces dense packing by means vertexdisjoint subgraphs, to diagonal array. Areas applications include efficient resource placement in mesh error-correcting codes.

参考文章(20)
Sandi Klavzar, Pranava K. Jha, Independence in Direct-Product Graphs. Ars Combinatoria. ,vol. 50, ,(1998)
Wilfried Imrich, Sandi Klavžar, Richard H Hammack, Product Graphs: Structure and Recognition ,(2000)
Sandi Klavzar, Johann Hagauer, On independence numbers of the cartesian product of graphs. Ars Combinatoria. ,vol. 43, ,(1996)
Stephen Hedetniemi, Teresa W. Haynes, Peter Slater, Fundamentals of domination in graphs ,(1998)
Quentin F. Stout, Marilynn Livingston, PERFECT DOMINATING SETS ,(1990)
Jan Kratochvíl, Perfect codes over graphs Journal of Combinatorial Theory, Series B. ,vol. 40, pp. 224- 228 ,(1986) , 10.1016/0095-8956(86)90079-1
Pranava K. Jha, Giora Slutzki, A scheme to construct distance-three codes using Latin squares, with applications to the n -cube Information Processing Letters. ,vol. 55, pp. 123- 127 ,(1995) , 10.1016/0020-0190(95)00066-L
Solomon W. Golomb, Lloyd R. Welch, Perfect Codes in the Lee Metric and the Packing of Polyominoes SIAM Journal on Applied Mathematics. ,vol. 18, pp. 302- 317 ,(1970) , 10.1137/0118025