Preference structures and their numerical representations

作者: Peter Fishburn

DOI: 10.1016/S0304-3975(98)00277-1

关键词:

摘要: Abstract This paper presents a selective survey of numerical representations preference structures from the perspective representational theory measurement. It reviews historical contributions to ordinal, additive, and expected utility theories, then describes recent in these areas.

参考文章(107)
John von Neumann, Oskar Morgenstern, Theory of Games and Economic Behavior ,(1944)
Peter C. Fishburn, Human Decision Making and Ordered Sets Springer, Dordrecht. pp. 437- 465 ,(1989) , 10.1007/978-94-009-2639-4_12
E. Malinvaud, Note on von Neumann-Morgenstern's Strong Independence Axiom Econometrica. ,vol. 20, pp. 679- ,(1952) , 10.2307/1907650
G. Debreu, E. Baudier, Theory of Value ,(1959)
D. Stanley Tarbell, Colloques Internationaux du Centre National de la Recherche Scientifique. Journal of the American Chemical Society. ,vol. 80, pp. 5581- 5581 ,(1958) , 10.1021/JA01553A083
John Nash, NON-COOPERATIVE GAMES Annals of Mathematics. ,vol. 54, pp. 286- ,(1951) , 10.1017/CBO9780511528231.007
Kenneth O. May, Intransitivity, Utility, and the Aggregation of Preference Patterns Econometrica. ,vol. 22, pp. 1- ,(1954) , 10.2307/1909827
Jaap Van Brakel, Foundations of measurement Papers IMEKO Workshop on Fundamental Logical Concepts of Measurement. pp. 1- 21 ,(1983)
Daniel Bernoulli, Exposition of a New Theory on the Measurement of Risk Econometrica. ,vol. 22, pp. 23- ,(1954) , 10.2307/1909829