A fast multipole boundary element method for a modified hypersingular boundary integral equation

作者: Günther Of , Olaf Steinbach

DOI: 10.1007/978-3-540-36527-3_17

关键词:

摘要: For the solution of a Neumann boundary value problem we consider modified hypersingular integral equation which reflects solvability and scaling conditions non-unique problem. Galerkin discretization elliptic variational describe an efficient element approach is based on fast multipole method for single layer potential. In same way, preconditioner resulting linear system constructed.

参考文章(12)
O. Steinbach, W.L. Wendland, The construction of some efficient preconditioners in the boundary element method Advances in Computational Mathematics. ,vol. 9, pp. 191- 216 ,(1998) , 10.1023/A:1018937506719
Michel Artola, Jacques Louis Lions, John C. Amson, Robert Dautray, Integral equations and numerical methods Springer-Verlag. ,(2000)
Vidar Thomée, Albert H Schatz, Wolfgang L. Wendland, Mathematical theory of finite and boundary element methods ,(1990)
William Charles Hector McLean, Strongly Elliptic Systems and Boundary Integral Equations ,(2000)
U. Langer, O. Steinbach, Boundary Element Tearing and Interconnecting Methods Computing. ,vol. 71, pp. 205- 228 ,(2003) , 10.1007/S00607-003-0018-2
L Greengard, V Rokhlin, A fast algorithm for particle simulations Journal of Computational Physics. ,vol. 73, pp. 325- 348 ,(1987) , 10.1016/0021-9991(87)90140-9
Jacques-Louis Lions, Robert Dautray, Mathematical analysis and numerical methods for science and technology manm. ,(1993)