Strain hardening model of TWIP steels with manganese content

作者: F. Liu , W.J. Dan , W.G. Zhang

DOI: 10.1016/J.MSEA.2016.07.115

关键词:

摘要: Abstract High Mn austenitic Fe–Mn–C steel is a superior material which exhibits excellent strain hardening behavior, with high strength and good ductility as a result of deformation-induced twinning. In this paper, a dislocation-based strain hardening model is developed by considering the effect of the Mn content on the mechanical behavior of TWIP steel. The Mn content varies in the range of 22–26 wt%. In the model, the stacking fault energy (SFE) is considered to be dependent on the composition of the TWIP steel and the plastic strain. The …

参考文章(47)
W. Borek, L. A. Dobrzyński, Hot deformation and recrystallization of advanced high-manganese austenitic TWIP steels Journal of achievements in materials and manufacturing engineering. ,vol. 46, ,(2011)
W. Borek, L. A. Dobrzański, A. Grajcar, Microstructure evolution of high-manganese steel during the thermomechanical processing Archives of materials science and engineering. ,vol. 37, pp. 69- 76 ,(2009)
IJ Beyerlein, RJ McCabe, CN Tomé, None, Effect of microstructure on the nucleation of deformation twins in polycrystalline high-purity magnesium: A multi-scale modeling study Journal of The Mechanics and Physics of Solids. ,vol. 59, pp. 988- 1003 ,(2011) , 10.1016/J.JMPS.2011.02.007
G. B. Olson, Morris Cohen, Kinetics of strain-induced martensitic nucleation Metallurgical Transactions A. ,vol. 6, pp. 791- 795 ,(1975) , 10.1007/BF02672301
D. Barbier, N. Gey, S. Allain, N. Bozzolo, M. Humbert, Analysis of the tensile behavior of a TWIP steel based on the texture and microstructure evolutions Materials Science and Engineering A-structural Materials Properties Microstructure and Processing. ,vol. 500, pp. 196- 206 ,(2009) , 10.1016/J.MSEA.2008.09.031
D. Barbier, V. Favier, B. Bolle, Modeling the deformation textures and microstructural evolutions of a Fe–Mn–C TWIP steel during tensile and shear testing Materials Science and Engineering A-structural Materials Properties Microstructure and Processing. ,vol. 540, pp. 212- 225 ,(2012) , 10.1016/J.MSEA.2012.01.128
K.M. Rahman, V.A. Vorontsov, D. Dye, The effect of grain size on the twin initiation stress in a TWIP steel Acta Materialia. ,vol. 89, pp. 247- 257 ,(2015) , 10.1016/J.ACTAMAT.2015.02.008
R. P. Reed, R. E. Schramm, Relationship between stacking‐fault energy and x‐ray measurements of stacking‐fault probability and microstrain Journal of Applied Physics. ,vol. 45, pp. 4705- 4711 ,(1974) , 10.1063/1.1663122
O Bouaziz, N Guelton, Modelling of TWIP effect on work-hardening Materials Science and Engineering A-structural Materials Properties Microstructure and Processing. ,vol. 319, pp. 246- 249 ,(2001) , 10.1016/S0921-5093(00)02019-0
A.S. Hamada, L.P. Karjalainen, M.C. Somani, The influence of aluminum on hot deformation behavior and tensile properties of high-Mn TWIP steels Materials Science and Engineering A-structural Materials Properties Microstructure and Processing. ,vol. 467, pp. 114- 124 ,(2007) , 10.1016/J.MSEA.2007.02.074