Numerical analysis for distributed-order differential equations

作者: Kai Diethelm , Neville J. Ford

DOI: 10.1016/J.CAM.2008.07.018

关键词:

摘要: In this paper we present and analyse a numerical method for the solution of distributed-order differential equation general form @!"0^mA(r,D"*^ru(t))dr=f(t) where m is positive real number derivative D"*^r taken to be fractional Caputo type order r. We give convergence theory our conclude with some examples.

参考文章(22)
Kai Diethelm, Neville J. Ford, Numerical solution methods for distributed order differential equations Institute of Mathematics & Informatics, Bulgarian Academy of Sciences. ,(2001)
Kai Diethelm, AN ALGORITHM FOR THE NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER ETNA. Electronic Transactions on Numerical Analysis [electronic only]. ,vol. 5, pp. 1- 6 ,(1997)
Michele Caputo, Mean fractional-order-derivatives differential equations and filters Annali Dell'universita' Di Ferrara. ,vol. 41, pp. 73- 84 ,(1995) , 10.1007/BF02826009
Kai Diethelm, Neville J. Ford, NUMERICAL SOLUTION OF THE BAGLEY-TORVIK EQUATION ∗ Bit Numerical Mathematics. ,vol. 42, pp. 490- 507 ,(2002) , 10.1023/A:1021973025166
Kai Diethelm, Neville J. Ford, Analysis of Fractional Differential Equations Journal of Mathematical Analysis and Applications. ,vol. 265, pp. 229- 248 ,(2002) , 10.1006/JMAA.2000.7194
Kai Diethelm, Neville J. Ford, Alan D. Freed, Detailed error analysis for a fractional Adams method Numerical Algorithms. ,vol. 36, pp. 31- 52 ,(2004) , 10.1023/B:NUMA.0000027736.85078.BE