Study on the Generalized Formulations with the Aim to Reproduce the Viscoelastic Dynamic Behavior of Polymers

作者: Andrea Genovese , Francesco Carputo , Antonio Maiorano , Francesco Timpone , Flavio Farroni

DOI: 10.3390/APP10072321

关键词:

摘要:

参考文章(32)
B. N. J. Persson, Theory of rubber friction and contact mechanics Journal of Chemical Physics. ,vol. 115, pp. 3840- 3861 ,(2001) , 10.1063/1.1388626
Firas Khemane, Rachid Malti, Tarek Raïssi, Xavier Moreau, Robust estimation of fractional models in the frequency domain using set membership methods Signal Processing. ,vol. 92, pp. 1591- 1601 ,(2012) , 10.1016/J.SIGPRO.2011.12.008
Mokarram Hossain, Duc Khoi Vu, Paul Steinmann, Experimental study and numerical modelling of VHB 4910 polymer Computational Materials Science. ,vol. 59, pp. 65- 74 ,(2012) , 10.1016/J.COMMATSCI.2012.02.027
Zhao Xiao, Yang Haitian, He Yiqian, Identification of constitutive parameters for fractional viscoelasticity Communications in Nonlinear Science and Numerical Simulation. ,vol. 19, pp. 311- 322 ,(2014) , 10.1016/J.CNSNS.2013.05.019
F.C. Meral, T.J. Royston, R. Magin, Fractional calculus in viscoelasticity: An experimental study Communications in Nonlinear Science and Numerical Simulation. ,vol. 15, pp. 939- 945 ,(2010) , 10.1016/J.CNSNS.2009.05.004
Franck Renaud, Jean-Luc Dion, Gaël Chevallier, Imad Tawfiq, Rémi Lemaire, A new identification method of viscoelastic behavior: Application to the generalized Maxwell model Mechanical Systems and Signal Processing. ,vol. 25, pp. 991- 1010 ,(2011) , 10.1016/J.YMSSP.2010.09.002
J.J. de Espı́ndola, João M. da Silva Neto, Eduardo M.O. Lopes, A generalised fractional derivative approach to viscoelastic material properties measurement Applied Mathematics and Computation. ,vol. 164, pp. 493- 506 ,(2005) , 10.1016/J.AMC.2004.06.099
Lixia Yuan, Om P. Agrawal, A Numerical Scheme for Dynamic Systems Containing Fractional Derivatives Journal of Vibration and Acoustics. ,vol. 124, pp. 321- 324 ,(1998) , 10.1115/1.1448322