Methods for Measuring Urinary Enzyme Activities

作者: H. Mattenheimer , K. Jung , H. Grötsch , Z. J. Simane , J. E. Scherberich

DOI: 10.1007/978-3-642-84313-6_8

关键词:

摘要: Aminopeptidases (α-aminoacylpeptide hydrolases, EC 3.4.11) comprise a group of exopeptidases, which split single amino acids from the N-terminus peptide chains. Two, namely cytosolic (EC 3.4.11.1) and microsomal forms 3.4.11.2), are relatively broad substrate specificity. The enzyme, “classic” leucine aminopeptidase [6], hydrolyzes L-peptides with an N-terminal residue. recommended substrates L-leucinamide [4, 5] L-leucine hydrazide [7]. Chromogenic like L-leucine-4-nitroanilide or L-leucine-β-naphthylamide not hydrolyzed. pH optimum enzyme is between 9–10; it activated by Mg2+ Mn2+ ions inhibited Co2+ [19]. concerns us here, acts preferentially on peptides alanine, name alanine (AAP) was introduced [18]; L-alanine-β-naphthylamide [17] L-alanine-4-nitroanilide [21] substrates. L-Leucine derivatives [3] [20] also split, although at slower rate. then, termed either AAP (LAP), depending being used. terminology becomes confusing, particularly when one considers that, strictly speaking, “leucine aminopeptidase” should be reserved for enzyme. L-Alanine-4-nitroanilide choice determination because its relative specificity (L-leucine-4-nitroanilide cystyl aminopeptidases), higher hydrolysis rate better solubility as compared L-leucine-4-nitroanilide. main advantages nitroanilides over naphthylamides possibility continuous recording release 4-nitroaniline easy adaptation assay to automated analysers.

参考文章(151)
Masakazu Miura, Iwao Koyama, Hiroko Matsuzaki, Yoshikatsu Sakagishi, Hiroh Ikezawa, Tsugikazu Komoda, Organ specific properties for human urinary alkaline phosphatases. Clinica Chimica Acta. ,vol. 171, pp. 63- 74 ,(1988) , 10.1016/0009-8981(88)90291-4
K. NUSTAD, The relationship between kidney and urinary kininogenase British Journal of Pharmacology. ,vol. 39, pp. 73- 86 ,(1970) , 10.1111/J.1476-5381.1970.TB09557.X
P. Kugler, G. Wolf, J. Scherberich, Histochemical demonstration of peptidases in the human kidney. Histochemistry and Cell Biology. ,vol. 83, pp. 337- 341 ,(1985) , 10.1007/BF00684380
Steven B. Zimmerman, Georgianna Sandeen, A sensitive assay for pancreatic ribonuclease Analytical Biochemistry. ,vol. 10, pp. 444- 449 ,(1965) , 10.1016/0003-2697(65)90313-1
H. Mattenheimer, W. Frölke, H. Grötsch, Z. Simane, Identification of inhibitors of urinary alanine aminopeptidase. Clinica Chimica Acta. ,vol. 160, pp. 129- 135 ,(1986) , 10.1016/0009-8981(86)90133-6
Erik Ilsø Christensen, Arvid B. Maunsbach, Intralysosomal digestion of lysozyme in renal proximal tubule cells Kidney International. ,vol. 6, pp. 396- 407 ,(1974) , 10.1038/KI.1974.125
S. S. Tate, A. Meister, Affinity labeling of gamma-glutamyl transpeptidase and location of the gamma-glutamyl binding site on the light subunit. Proceedings of the National Academy of Sciences of the United States of America. ,vol. 74, pp. 931- 935 ,(1977) , 10.1073/PNAS.74.3.931
Chun-Ting Yuen, Robert G. Price, Lutchminarine Chattagoon, Anthony C. Richardson, Percy F.G. Praill, Colorimetric assays for N Aacetyl-β-D-glucosaminidase and β-D-galactosidase in human urine using newly-developed ω-nitrostyryl substrates Clinica Chimica Acta. ,vol. 124, pp. 195- 204 ,(1982) , 10.1016/0009-8981(82)90387-4