Solution of a separable smoluchowski equation in one spatial dimension

作者: I. Klik , Y. D. Yao

DOI: 10.1103/PHYSREVE.62.4469

关键词:

摘要: An approximate solution of a separable Smoluchowski equation in one spatial dimension is constructed here the form finite eigenfunction expansion. The spectrum operator, and corresponding eigenfunctions, are computed using so called shooting method adjoints. Explicit numerical solutions presented for static fluctuating potentials, it shown that any smooth initial probablity distribution expansion holds on all time scales. applicable to linear eigenproblem one-dimensional interval; Sturm-Liouville problem has particularly convenient form.

参考文章(8)
Alexander N. Drozdov, Shigeo Hayashi, Improved power series expansion for the time evolution operator: Application to two-dimensional systems Journal of Chemical Physics. ,vol. 110, pp. 1888- 1895 ,(1999) , 10.1063/1.477855
I. Klik, Y. D. Yao, Semianalytic solution of the Kramers exit problem for a small ferromagnetic particle. Physical Review E. ,vol. 59, pp. 6444- 6447 ,(1999) , 10.1103/PHYSREVE.59.6444
I. Klik, Y. D. Yao, Integral equation for the resonant activation rate Physical Review E. ,vol. 57, pp. 6180- 6183 ,(1998) , 10.1103/PHYSREVE.57.6180
S. V. G. Menon, First Passage Time Distribution in an Oscillating Field Journal of Statistical Physics. ,vol. 66, pp. 1675- 1682 ,(1992) , 10.1007/BF01054444
I. Klik, Y. D. Yao, C. R. Chang, Non-Markovian thermal relaxation at elevated temperatures Physical Review E. ,vol. 52, pp. 6892- 6895 ,(1995) , 10.1103/PHYSREVE.52.6892
H.A. Kramers, Brownian motion in a field of force and the diffusion model of chemical reactions Physica D: Nonlinear Phenomena. ,vol. 7, pp. 284- 304 ,(1940) , 10.1016/S0031-8914(40)90098-2
Martin Bier, R. Dean Astumian, Matching a diffusive and a kinetic approach for escape over a fluctuating barrier. Physical Review Letters. ,vol. 71, pp. 1649- 1652 ,(1993) , 10.1103/PHYSREVLETT.71.1649
I. Klik, Y.D. Yao, A new algorithm for thermal decay simulations IEEE Transactions on Magnetics. ,vol. 34, pp. 1285- 1287 ,(1998) , 10.1109/20.706523