CFD Analysis of Multi-Phase Reacting Transport Phenomena in Discharge Process of Non-Aqueous Lithium-Air Battery

作者: Jinliang Yuan , Bengt Sundén , Jong-Sung Yu

DOI:

关键词:

摘要: A computational fluid dynamics (CFD) model is developed for rechargeable nonaqueous electrolyte lithiumair batteries with a partial opening oxygen supply to the cathode. Multiphase transport phenomena occurred in bat tery are considered, including dissolved lithium ions and gas liquid electrolyte, solidphase electron transfer i n porous functional materials liquidphase charge transp ort electrolyte. These processes coupled electrochemical reactions at active surfaces, effects of discharge reactiongenerated solid Li2O2 on properties reaction rate evaluated implemented model. The predicted results discussed analyzed terms spatial transient distribution various parameters, such as local concentration, rate, variable Li 2O2 volume fraction porosity, well effective diffusion coefficients. It found that effect product deposited surfaces significant overall battery performance.

参考文章(15)
Weeratunge Malalasekera, Henk K Versteeg, An introduction to computational fluid dynamics : the finite volume method Published in <b>2007</b> in Harlow England by Pearson Education Ltd. ,(1995)
J. Read, K. Mutolo, M. Ervin, W. Behl, J. Wolfenstine, A. Driedger, D. Foster, Oxygen Transport Properties of Organic Electrolytes and Performance of Lithium/Oxygen Battery Journal of The Electrochemical Society. ,vol. 150, ,(2003) , 10.1149/1.1606454
Myounggu Park, Ka Young Kim, Hyeryun Seo, Young Eun Cheon, Jae Hyun Koh, Heeyoung Sun, Tae Jin Kim, Practical Challenges Associated with Catalyst Development for the Commercialization of Li-air Batteries Journal of electrochemical science and technology. ,vol. 5, pp. 1- 18 ,(2014) , 10.5229/JECST.2014.5.1.1
Awan Zahoor, Maria Christy, Yun-Ju Hwang, Kee-Suk Nahm, Lithium Air Battery: Alternate Energy Resource for the Future Journal of electrochemical science and technology. ,vol. 3, pp. 14- 23 ,(2012) , 10.5229/JECST.2012.3.1.14
G. Girishkumar, B. McCloskey, A. C. Luntz, S. Swanson, W. Wilcke, Lithium−Air Battery: Promise and Challenges Journal of Physical Chemistry Letters. ,vol. 1, pp. 2193- 2203 ,(2010) , 10.1021/JZ1005384
Ukrit Sahapatsombut, Hua Cheng, Keith Scott, Modelling the micro–macro homogeneous cycling behaviour of a lithium–air battery Journal of Power Sources. ,vol. 227, pp. 243- 253 ,(2013) , 10.1016/J.JPOWSOUR.2012.11.053
Jinliang Yuan, Bengt Sundén, On mechanisms and models of multi-component gas diffusion in porous structures of fuel cell electrodes International Journal of Heat and Mass Transfer. ,vol. 69, pp. 358- 374 ,(2014) , 10.1016/J.IJHEATMASSTRANSFER.2013.10.032
Peng Tan, Zhaohuan Wei, W. Shyy, T.S. Zhao, Prediction of the theoretical capacity of non-aqueous lithium-air batteries Applied Energy. ,vol. 109, pp. 275- 282 ,(2013) , 10.1016/J.APENERGY.2013.04.031
Paul Albertus, G. Girishkumar, Bryan McCloskey, Roel S. Sánchez-Carrera, Boris Kozinsky, Jake Christensen, A. C. Luntz, Identifying Capacity Limitations in the Li/Oxygen Battery Using Experiments and Modeling Journal of The Electrochemical Society. ,vol. 158, ,(2011) , 10.1149/1.3527055