Frequency-domain weighted non-linear least-squares estimation of continuous-time, time-varying systems

作者: J. Lataire , R. Pintelon

DOI: 10.1049/IET-CTA.2010.0223

关键词:

摘要: A frequency-domain least-squares estimator is presented for identifying linear, continuous-time, time-varying dynamical systems. The model considered a ordinary differential equation whose coefficients vary as polynomials in time. approach used, thus allowing the user to determine easily frequency band(s) of interest. It shown that bias errors because windowing and sampling continuous-time signals can be modelled by polynomial function frequency. regression matrices estimators are very efficiently computed using fast Fourier transform algorithm its inverse. total least-squares, generalised weighted, non-linear constructed. latter two consistent. illustrated on simulation measurement data.

参考文章(23)
H. hamme, R. Pintelon, J. Schoukens, Discrete-time modeling and identification of continuous-time systems: a general framework Springer, Dordrecht. pp. 17- 77 ,(1991) , 10.1007/978-94-011-3558-0_2
Rik Pintelon, Joannes Schoukens, System Identification: A Frequency Domain Approach ,(2003)
Lennart Ljung, Torsten Söderström, Theory and Practice of Recursive Identification ,(1983)
Rik Pintelon, Patrick Guillaume, Gerd Vandersteen, Yves Rolain, Analyses, Development, and Applications of TLS Algorithms in Frequency Domain System Identification SIAM Journal on Matrix Analysis and Applications. ,vol. 19, pp. 983- 1004 ,(1998) , 10.1137/S0895479896309074
Atsushi FUJIMORI, Lennart LJUNG, Parameter Estimation of Polytopic Models for a Linear Parameter Varying Aircraft System Transactions of The Japan Society for Aeronautical and Space Sciences. ,vol. 49, pp. 129- 136 ,(2006) , 10.2322/TJSASS.49.129
E. Van Gheem, J. Vereecken, J. Schoukens, R. Pintelon, P. Guillaume, P. Verboven, L. Pauwels, Instantaneous impedance measurements on aluminium using a Schroeder multisine excitation signal Electrochimica Acta. ,vol. 49, pp. 2919- 2925 ,(2004) , 10.1016/J.ELECTACTA.2004.01.050