Numerical solutions for the Helmholtz boundary value problems of anisotropic homogeneous media

作者: Moh. Ivan Azis

DOI: 10.1016/J.JCP.2019.01.002

关键词:

摘要: Abstract Numerical solutions to boundary value problems governed by two-dimensional Helmholtz equation for anisotropic media is obtained. The standard BEM has been employed obtain the solutions. results show that anisotropy of medium under consideration causes effects on solution. should be taken into account implementation modeling and computation.

参考文章(23)
Nail A. Gumerov, Ramani Duraiswami, Fast multipole methods for the Helmholtz equation in three dimensions Elsevier. ,(2004)
David L. Clements, Moh. Ivan Azis, A Note on a Boundary Element Method for the Numerical Solution of Boundary Value Problems in Isotropic Inhomogeneous Elasticity Journal of The Chinese Institute of Engineers. ,vol. 23, pp. 261- 268 ,(2000) , 10.1080/02533839.2000.9670545
Bjorn Engquist, Andrew Majda, Absorbing boundary conditions for the numerical simulation of waves Mathematics of Computation. ,vol. 31, pp. 629- 651 ,(1977) , 10.1090/S0025-5718-1977-0436612-4
Jean-Pierre Berenger, A perfectly matched layer for the absorption of electromagnetic waves Journal of Computational Physics. ,vol. 114, pp. 185- 200 ,(1994) , 10.1006/JCPH.1994.1159
ShanDe Li, GuiBing Gao, QiBai Huang, WeiQi Liu, Jun Chen, Fast multipole accelerated boundary element method for the Helmholtz equation in acoustic scattering problems Science China Physics, Mechanics and Astronomy. ,vol. 54, pp. 1405- 1410 ,(2011) , 10.1007/S11433-011-4330-0
Jörg Schleicher, Martin Tygel, Bjørn Ursin, Norman Bleistein, The Kirchhoff–Helmholtz integral for anisotropic elastic media Wave Motion. ,vol. 34, pp. 353- 364 ,(2001) , 10.1016/S0165-2125(01)00077-4
Alvin Bayliss, Max Gunzburger, Eli Turkel, Boundary conditions for the numerical solution of elliptic equations in exterior regions Siam Journal on Applied Mathematics. ,vol. 42, pp. 430- 451 ,(1982) , 10.1137/0142032
M.I. Azis, D.L. Clements, Nonlinear transient heat conduction problems for a class of inhomogeneous anisotropic materials by BEM Engineering Analysis With Boundary Elements. ,vol. 32, pp. 1054- 1060 ,(2008) , 10.1016/J.ENGANABOUND.2007.04.007
Alvin Bayliss, Eli Turkel, Radiation boundary conditions for wave-like equations Communications on Pure and Applied Mathematics. ,vol. 33, pp. 707- 725 ,(1980) , 10.1002/CPA.3160330603