A Web Resource for Standardized Benchmark Datasets, Metrics, and Rosetta Protocols for Macromolecular Modeling and Design

作者: Shane Ó Conchúir , Kyle A. Barlow , Roland A. Pache , Noah Ollikainen , Kale Kundert

DOI: 10.1371/JOURNAL.PONE.0130433

关键词:

摘要: The development and validation of computational macromolecular modeling design methods depend on suitable benchmark datasets informative metrics for comparing protocols. In addition, if a method is intended to be adopted broadly in diverse biological applications, there needs information appropriate parameters each protocol, as well describing the expected accuracy compared experimental data. certain disciplines, exist established benchmarks public resources where experts particular methodology are encouraged supply their most efficient implementation benchmark. We aim provide such resource protocols design. present freely accessible web (https://kortemmelab.ucsf.edu/benchmarks) guide protein site provides compare performance variety using different sampling energy functions, providing “best practice” set method. Each has an associated downloadable capture archive containing input files, analysis scripts, tutorials running captures may run with any method; we command lines Rosetta software suite. have compiled initial spanning three key areas: prediction energetic effects mutations, design, structure prediction, state-of-the-art With help wider community, hope expand included website continue evaluate new iterations current they become available.

参考文章(52)
Andrew Leaver-Fay, Matthew J O'meara, Mike Tyka, Ron Jacak, Yifan Song, Elizabeth H Kellogg, James Thompson, Ian W Davis, Roland A Pache, Sergey Lyskov, Jeffrey J Gray, Tanja Kortemme, Jane S Richardson, James J Havranek, Jack Snoeyink, David Baker, Brian Kuhlman, None, Scientific Benchmarks for Guiding Macromolecular Energy Function Improvement Methods in Enzymology. ,vol. 523, pp. 109- 143 ,(2013) , 10.1016/B978-0-12-394292-0.00006-0
Alexander Benedix, Caroline M Becker, Bert L de Groot, Amedeo Caflisch, Rainer A Böckmann, Predicting free energy changes using structural ensembles. Nature Methods. ,vol. 6, pp. 3- 4 ,(2009) , 10.1038/NMETH0109-3
A. Ernst, S. L. Sazinsky, S. Hui, B. Currell, M. Dharsee, S. Seshagiri, G. D. Bader, S. S. Sidhu, Rapid evolution of functional complexity in a domain family. Science Signaling. ,vol. 2, ,(2009) , 10.1126/SCISIGNAL.2000416
Amelie Stein, Tanja Kortemme, Improvements to Robotics-Inspired Conformational Sampling in Rosetta PLoS ONE. ,vol. 8, pp. e63090- ,(2013) , 10.1371/JOURNAL.PONE.0063090
Suwen Zhao, Kai Zhu, Jianing Li, Richard A. Friesner, Progress in super long loop prediction. Proteins. ,vol. 79, pp. 2920- 2935 ,(2011) , 10.1002/PROT.23129
Noah Ollikainen, Tanja Kortemme, Computational Protein Design Quantifies Structural Constraints on Amino Acid Covariation PLoS Computational Biology. ,vol. 9, pp. e1003313- ,(2013) , 10.1371/JOURNAL.PCBI.1003313
A. Patrícia Bento, Anna Gaulton, Anne Hersey, Louisa J. Bellis, Jon Chambers, Mark Davies, Felix A. Krüger, Yvonne Light, Lora Mak, Shaun McGlinchey, Michal Nowotka, George Papadatos, Rita Santos, John P. Overington, The ChEMBL bioactivity database: an update Nucleic Acids Research. ,vol. 42, pp. 1083- 1090 ,(2014) , 10.1093/NAR/GKT1031
András Fiser, Richard Kinh Gian Do, Andrej Šali, Modeling of loops in protein structures. Protein Science. ,vol. 9, pp. 1753- 1773 ,(2000) , 10.1110/PS.9.9.1753
T. Kortemme, D. E. Kim, D. Baker, Computational alanine scanning of protein-protein interfaces. Science Signaling. ,vol. 2004, ,(2004) , 10.1126/STKE.2192004PL2