On radial basis function nets and kernel regression: Statistical consistency, convergence rates, and receptive field size

作者: Lei Xu , Adam Krzyżak , Alan Yuille

DOI: 10.1016/0893-6080(94)90040-X

关键词:

摘要: … Thus, we can consider the kernel regression estimator (7) as a particular case of RBF nets of type-I given by eqn (6), with a hyperspherically shaped receptive field specified by the …

参考文章(45)
David Lowe, David S. Broomhead, Radial Basis Functions, Multi-Variable Functional Interpolation and Adaptive Networks Complex Systems. ,vol. 2, pp. 321- 355 ,(1988)
K. Stokbro, D. K. Umberger, John A. Hertz, Exploiting Neurons with Localized Receptive Fields to Learn Chaos. Complex Systems. ,vol. 4, ,(1990)
Federico Girosi, Gabriele Anzellotti, Convergence Rates of Approximation by Translates Defense Technical Information Center. ,(1992) , 10.21236/ADA260100
Antoni Zygmund, Richard L. Wheeden, Measure and integral ,(1977)
M. J. D. Powell, Radial basis functions for multivariable interpolation: a review Algorithms for approximation. pp. 143- 167 ,(1987)
Tomaso Poggio, Federico Girosi, A Theory of Networks for Approximation and Learning Massachusetts Institute of Technology. ,(1989)
Donald F. Specht, Probabilistic neural networks Neural Networks. ,vol. 3, pp. 109- 118 ,(1990) , 10.1016/0893-6080(90)90049-Q
A. R. Barron, Approximation and estimation bounds for artificial neural networks conference on learning theory. ,vol. 14, pp. 115- 133 ,(1991) , 10.5555/114836.114859
Kurt Hornik, Approximation capabilities of multilayer feedforward networks Neural Networks. ,vol. 4, pp. 251- 257 ,(1991) , 10.1016/0893-6080(91)90009-T