A Hierarchical Probabilistic Model for Facial Feature Detection

作者: Yue Wu , Ziheng Wang , Qiang Ji , None

DOI: 10.1109/CVPR.2014.230

关键词:

摘要: Facial feature detection from facial images has attracted great attention in the field of computer vision. It is a nontrivial task since appearance and shape face tend to change under different conditions. In this paper, we propose hierarchical probabilistic model that could infer true locations features given image measurements even if with significant expression pose. The implicitly captures lower level variations components using mixture model. Furthermore, higher level, it also learns joint relationship among components, expression, pose information through automatic structure learning parameter estimation Experimental results on benchmark databases demonstrate effectiveness proposed

参考文章(28)
Nir Friedman, Daniel L. Koller, Probabilistic graphical models : principles and techniques The MIT Press. ,(2009)
Nir Friedman, Learning Belief Networks in the Presence of Missing Values and Hidden Variables international conference on machine learning. pp. 125- 133 ,(1997)
Vuong Le, Jonathan Brandt, Zhe Lin, Lubomir Bourdev, Thomas S. Huang, Interactive Facial Feature Localization Computer Vision – ECCV 2012. pp. 679- 692 ,(2012) , 10.1007/978-3-642-33712-3_49
Martin Kostinger, Paul Wohlhart, Peter M. Roth, Horst Bischof, Annotated Facial Landmarks in the Wild: A large-scale, real-world database for facial landmark localization international conference on computer vision. pp. 2144- 2151 ,(2011) , 10.1109/ICCVW.2011.6130513
David J. Fleet, Allan D. Jepson, Computation of component image velocity from local phase information International Journal of Computer Vision. ,vol. 5, pp. 77- 104 ,(1990) , 10.1007/BF00056772
B. Fasel, Juergen Luettin, Automatic facial expression analysis: a survey Pattern Recognition. ,vol. 36, pp. 259- 275 ,(2003) , 10.1016/S0031-3203(02)00052-3
T.F. Cootes, C.J. Taylor, D.H. Cooper, J. Graham, Active shape models—their training and application Computer Vision and Image Understanding. ,vol. 61, pp. 38- 59 ,(1995) , 10.1006/CVIU.1995.1004
Xiangxin Zhu, D. Ramanan, Face detection, pose estimation, and landmark localization in the wild computer vision and pattern recognition. pp. 2879- 2886 ,(2012) , 10.1109/CVPR.2012.6248014
Jason M. Saragih, Simon Lucey, Jeffrey F. Cohn, Deformable Model Fitting by Regularized Landmark Mean-Shift International Journal of Computer Vision. ,vol. 91, pp. 200- 215 ,(2011) , 10.1007/S11263-010-0380-4
Cassio P. de Campos, Zhi Zeng, Qiang Ji, Structure learning of Bayesian networks using constraints Proceedings of the 26th Annual International Conference on Machine Learning - ICML '09. pp. 113- 120 ,(2009) , 10.1145/1553374.1553389