The conway polynomial

作者: Louis H. Kauffman

DOI: 10.1016/0040-9383(81)90017-3

关键词:

摘要: §l. INTRODUCTION THE CLASSICAL Alexander polynomial[l] A(x) = A&) of a knot or link K C S3 is an invariant ambient isotopy that well-defined up to sign and multiplication by powers the variable x. The Conway polynomial V(z) V,(z) direct isotopy. This polynomial, first introduced in[2], has remarkable properties allow its computation from diagram without recourse matrices determinants. It related via potential function V(x x-‘) which (up x) equivalent A(x*). purpose this paper give exposition explain source modelling it in analogy polynomial. There good geometric explanation for function: proceeds as follows: Given oriented S3, let F be connected, spanning surface K. Let 8: H,(F) x H,(F)+2 Seifert pairing (see 03). 0 also denote any matrix with respect basis H,(F). Define potenfiaI a,(x) formula 0,(x) 0(x0 -x-‘(Y) where D denotes determinant 8’ transpose 8. (If 0, n,(x) 1). Our main result following:

参考文章(5)
J.H. CONWAY, An enumeration of knots and links, and some of their algebraic properties Computational Problems in Abstract Algebra#R##N#Proceedings of a Conference Held at Oxford Under the Auspices of the Science Research Council Atlas Computer Laboratory, 29th August to 2nd September 1967. pp. 329- 358 ,(1970) , 10.1016/B978-0-08-012975-4.50034-5
J. Levine, An algebraic classification of some knots of codimension two Commentarii Mathematici Helvetici. ,vol. 45, pp. 185- 198 ,(1970) , 10.1007/BF02567325
J. Levine, Knot cobordism groups in codimension two Commentarii Mathematici Helvetici. ,vol. 44, pp. 229- 244 ,(1969) , 10.1007/BF02564525
H. Seifert, Über das Geschlecht von Knoten Mathematische Annalen. ,vol. 110, pp. 571- 592 ,(1935) , 10.1007/BF01448044
J. W. Alexander, Topological invariants of knots and links Transactions of the American Mathematical Society. ,vol. 30, pp. 275- 306 ,(1928) , 10.1090/S0002-9947-1928-1501429-1