Helix: Algorithm/Architecture Co-design for Accelerating Nanopore Genome Base-calling

作者: Qian Lou , Sarath Chandra Janga , Lei Jiang

DOI: 10.1145/3410463.3414626

关键词:

摘要: Nanopore genome sequencing is the key to enabling personalized medicine, global food security, and virus surveillance. The state-of-the-art base-callers adopt deep neural networks (DNNs) translate electrical signals generated by nanopore sequencers digital DNA symbols. A DNN-based base-caller consumes 44.5% of total execution time a pipeline. However, it difficult quantize build power-efficient processing-in-memory (PIM) run quantized base-caller. Although conventional network quantization techniques reduce computing overhead replacing floating-point multiply-accumulations cheaper fixed-point operations, significantly increases number systematic errors that cannot be corrected read votes. power density prior nonvolatile memory (NVM)-based PIMs has already exceeded thermal tolerance even with active heat sinks, because their efficiency severely limited analog-to-digital converters (ADC). Finally, Connectionist Temporal Classification (CTC) decoding voting cost 53.7% in base-caller, thus became its new bottleneck. In this paper, we propose novel algorithm/architecture co-designed PIM, Helix, power-efficiently accurately accelerate base-calling. From algorithm perspective, present error aware training minimize architecture low-power SOT-MRAM-based ADC array process conversion operations improve DNN PIMs. Moreover, revised traditional NVM-based dot-product engine CTC create SOT-MRAM binary comparator voting. Compared PIMs, Helix improves base-calling throughput 6x, per Watt 11.9x mm2 7.5x without degrading accuracy.

参考文章(25)
Xiangyu Dong, Cong Xu, Yuan Xie, N. P. Jouppi, NVSim: A Circuit-Level Performance, Energy, and Area Model for Emerging Nonvolatile Memory IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. ,vol. 31, pp. 994- 1007 ,(2012) , 10.1109/TCAD.2012.2185930
Alex Graves, Santiago Fernández, Faustino Gomez, Jürgen Schmidhuber, Connectionist temporal classification Proceedings of the 23rd international conference on Machine learning - ICML '06. pp. 369- 376 ,(2006) , 10.1145/1143844.1143891
Thomas Hoenen, Allison Groseth, Kyle Rosenke, Robert J. Fischer, Andreas Hoenen, Seth D. Judson, Cynthia Martellaro, Darryl Falzarano, Andrea Marzi, R. Burke Squires, Kurt R. Wollenberg, Emmie de Wit, Joseph Prescott, David Safronetz, Neeltje van Doremalen, Trenton Bushmaker, Friederike Feldmann, Kristin McNally, Fatorma K. Bolay, Barry Fields, Tara Sealy, Mark Rayfield, Stuart T. Nichol, Kathryn C. Zoon, Moses Massaquoi, Vincent J. Munster, Heinz Feldmann, Nanopore Sequencing as a Rapidly Deployable Ebola Outbreak Tool Emerging Infectious Diseases. ,vol. 22, pp. 331- 334 ,(2016) , 10.3201/EID2202.151796
Vladimír Boža, Broňa Brejová, Tomáš Vinař, DeepNano: Deep recurrent neural networks for base calling in MinION nanopore reads PLOS ONE. ,vol. 12, pp. e0178751- ,(2017) , 10.1371/JOURNAL.PONE.0178751
Hochul Lee, Farbod Ebrahimi, Pedram Khalili Amiri, Kang L. Wang, Low-Power, High-Density Spintronic Programmable Logic With Voltage-Gated Spin Hall Effect in Magnetic Tunnel Junctions IEEE Magnetics Letters. ,vol. 7, pp. 7426342- ,(2016) , 10.1109/LMAG.2016.2538742
Janusz J. Nowak, Ray P. Robertazzi, Jonathan Z. Sun, Guohan Hu, Jeong-Heon Park, JungHyuk Lee, Anthony J. Annunziata, Gen P. Lauer, Raman Kothandaraman, Eugene J. O'Sullivan, Philip L. Trouilloud, Younghyun Kim, Daniel C. Worledge, Dependence of Voltage and Size on Write Error Rates in Spin-Transfer Torque Magnetic Random-Access Memory IEEE Magnetics Letters. ,vol. 7, pp. 1- 4 ,(2016) , 10.1109/LMAG.2016.2539256
Nuno Rodrigues Faria, Ester C Sabino, Marcio RT Nunes, Luiz Carlos Junior Alcantara, Nicholas J Loman, Oliver G Pybus, None, Mobile real-time surveillance of Zika virus in Brazil. Genome Medicine. ,vol. 8, pp. 97- 97 ,(2016) , 10.1186/S13073-016-0356-2
Kazuma Nakano, Akino Shiroma, Makiko Shimoji, Hinako Tamotsu, Noriko Ashimine, Shun Ohki, Misuzu Shinzato, Maiko Minami, Tetsuhiro Nakanishi, Kuniko Teruya, Kazuhito Satou, Takashi Hirano, Advantages of genome sequencing by long-read sequencer using SMRT technology in medical area. Human Cell. ,vol. 30, pp. 149- 161 ,(2017) , 10.1007/S13577-017-0168-8
Miten Jain, Sergey Koren, Karen H Miga, Josh Quick, Arthur C Rand, Thomas A Sasani, John R Tyson, Andrew D Beggs, Alexander T Dilthey, Ian T Fiddes, Sunir Malla, Hannah Marriott, Tom Nieto, Justin O'Grady, Hugh E Olsen, Brent S Pedersen, Arang Rhie, Hollian Richardson, Aaron R Quinlan, Terrance P Snutch, Louise Tee, Benedict Paten, Adam M Phillippy, Jared T Simpson, Nicholas J Loman, Matthew Loose, None, Nanopore sequencing and assembly of a human genome with ultra-long reads Nature Biotechnology. ,vol. 36, pp. 338- 345 ,(2018) , 10.1038/NBT.4060
Jimmy J. Kan, Chando Park, Chi Ching, Jaesoo Ahn, Yuan Xie, Mahendra Pakala, Seung H. Kang, A Study on Practically Unlimited Endurance of STT-MRAM IEEE Transactions on Electron Devices. ,vol. 64, pp. 3639- 3646 ,(2017) , 10.1109/TED.2017.2731959