Classification treesA possible method for iso‐resource grouping in intensive care

作者: S. Ridley , S. Jones , A. Shahani , W. Brampton , M. Nielsen

DOI: 10.1046/J.1365-2044.1998.T01-1-00564.X

关键词:

摘要: Classification and grouping of clinical data into defined categories or hierarchies is difficult in intensive care practice. Diagnosis-related groups are used to categorise patients on the basis diagnosis. However, this approach may not be applicable where there wide heterogeneity within diagnostic groups. tree analysis uses selected independent variables group according a dependent variable way that reduces variation. In study, influence three easily identified patient attributes their length unit stay was explored using classification analysis. Two thousand five hundred forty-five critically ill from hospitals were classified so variation each minimised. 23 out 39 terminal groups, interquartile range < = 3 days.

参考文章(16)
A. R. Manara, J. A. L. Pittman, F. E. M. Braddon, Reasons for withdrawing treatment in patients receiving intensive care Anaesthesia. ,vol. 53, pp. 523- 528 ,(1998) , 10.1046/J.1365-2044.1998.T01-1-00407.X
Richard A Olshen, Charles J Stone, Leo Breiman, Jerome H Friedman, Classification and regression trees ,(1983)
S. RIDLEY, M. BIGGAM, P. STONE, Cost of intensive therapy. A description of methodology and initial results. Anaesthesia. ,vol. 46, pp. 523- 530 ,(1991) , 10.1111/J.1365-2044.1991.TB09648.X
Claus Garbe, Petra Büttner, Jochen Bertz, Günter Burg, Barbara d'Hoedt, Hubert Drepper, Irene Guggenmoos-Holzmann, Walter Lechner, Andrea Lippold, Constantin E. Orfanos, Almut Peters, Gernot Rassner, Rudolf Stadler, Waltraud Stroebel, Primary cutaneous melanoma. Identification of prognostic groups and estimation of individual prognosis for 5093 patients Cancer. ,vol. 75, pp. 2484- 2491 ,(1995) , 10.1002/1097-0142(19950515)75:10<2484::AID-CNCR2820751014>3.0.CO;2-U
Mark Robert Segal, Regression Trees for Censored Data Biometrics. ,vol. 44, pp. 35- 47 ,(1988) , 10.2307/2531894
G. Prause, B. Ratzenhofer‐Comenda, G. Pierer, F. Smolle‐Ju¨ttner, H. Glanzer, J. Smolle, Can ASA grade or Goldman's cardiac risk index predict peri-operative mortality? A study of 16 227 patients Anaesthesia. ,vol. 52, pp. 203- 206 ,(1997) , 10.1111/J.1365-2044.1997.074-AZ0074.X
Stanley Lemeshow, Mortality Probability Models (MPM II) Based on an International Cohort of Intensive Care Unit Patients JAMA: The Journal of the American Medical Association. ,vol. 270, pp. 2478- 2486 ,(1993) , 10.1001/JAMA.1993.03510200084037
John C. Hornberger, Hilde Habraken, Daniel A. Bloch, Minimum data needed on patient preferences for accurate, efficient medical decision making. Medical Care. ,vol. 33, pp. 297- 310 ,(1995) , 10.1097/00005650-199503000-00008
CAROLYN BEKES, SUZANNE FLEMING, W. ERIC SCOTT, Reimbursement for intensive care services under diagnosis-related groups. Critical Care Medicine. ,vol. 16, pp. 478- 481 ,(1988) , 10.1097/00003246-198805000-00003