Methods for Using Data Abstracted from Medical Charts to Impute Longitudinal Missing Data in a Clinical Trial

作者: Paul L. Hebert , Leslie T. Taylor , Jason J. Wang , Margo A. Bergman

DOI: 10.1016/J.JVAL.2011.05.049

关键词:

摘要: Abstract Objective To describe a method for imputing missing follow-up blood pressure data in clinical hypertension trial using pressures abstracted from medical charts. Methods We tested two-step method. In the first, longitudinal mixed-effects model was estimated on second, patient-specific fitted values this at were used to impute trial. Simulations that imposed alternative mechanisms observed compare approach imputation approaches do not incorporate Results For are random, incorporating chart-based models leads estimates of trial-based unbiased and have lower mean squared deviation than imputed without data. ameliorates but does eliminate inherent bias. Conclusions Incorporating chart into an algorithm via use is efficient way randomized

参考文章(17)
John B. Willett, Judith D. Singer, Applied Longitudinal Data Analysis ,(2003)
Richard F Potthoff, Gail E Tudor, Karen S Pieper, Vic Hasselblad, Can one assess whether missing data are missing at random in medical studies Statistical Methods in Medical Research. ,vol. 15, pp. 213- 234 ,(2006) , 10.1191/0962280206SM448OA
Vicki L. Kristman, Michael Manno, Pierre Côté, Methods to Account for Attrition in Longitudinal Data: Do They Work? A Simulation Study European Journal of Epidemiology. ,vol. 20, pp. 657- 662 ,(2005) , 10.1007/S10654-005-7919-7
Peter D Faris, William A Ghali, Rollin Brant, Colleen M Norris, P Diane Galbraith, Merril L Knudtson, Approach Investigators, Multiple imputation versus data enhancement for dealing with missing data in observational health care outcome analyses Journal of Clinical Epidemiology. ,vol. 55, pp. 184- 191 ,(2002) , 10.1016/S0895-4356(01)00433-4
Jos Twisk, Wieke de Vente, Attrition in longitudinal studies. How to deal with missing data. Journal of Clinical Epidemiology. ,vol. 55, pp. 329- 337 ,(2002) , 10.1016/S0895-4356(01)00476-0
Colleen M Norris, William A Ghali, Merril L Knudtson, C.David Naylor, L.Duncan Saunders, Dealing with missing data in observational health care outcome analyses. Journal of Clinical Epidemiology. ,vol. 53, pp. 377- 383 ,(2000) , 10.1016/S0895-4356(99)00181-X
Geert J.M.G. van der Heijden, A. Rogier T. Donders, Theo Stijnen, Karel G.M. Moons, Imputation of missing values is superior to complete case analysis and the missing-indicator method in multivariable diagnostic research: A clinical example Journal of Clinical Epidemiology. ,vol. 59, pp. 1102- 1109 ,(2006) , 10.1016/J.JCLINEPI.2006.01.015
Thomas G. Pickering, Andrew Coats, Jean M. Mallion, Giuseppe Mancia, Paolo Verdecchia, Task force V: White-coat hypertension Blood Pressure Monitoring. ,vol. 4, pp. 333- 341 ,(1999) , 10.1097/00126097-199900460-00006
Karel G.M. Moons, Rogier A.R.T. Donders, Theo Stijnen, Frank E. Harrell, Using the outcome for imputation of missing predictor values was preferred Journal of Clinical Epidemiology. ,vol. 59, pp. 1092- 1101 ,(2006) , 10.1016/J.JCLINEPI.2006.01.009
S. Van Buuren, J. P.L. Brand, C. G.M. Groothuis-Oudshoorn, D. B. Rubin, Fully conditional specification in multivariate imputation Journal of Statistical Computation and Simulation. ,vol. 76, pp. 1049- 1064 ,(2006) , 10.1080/10629360600810434