Analysis of bilinear systems using Walsh functions

作者: F.L. Lewis , V.G. Mertzios , G. Vachtsevanos , M.A. Christodoulou

DOI: 10.1109/9.45160

关键词:

摘要: By using Walsh functions to analyze bilinear systems, it is shown that the nonlinear differential system equation can be converted a linear algebraic generalized Lyapunov solved for coefficients of state x(t) in terms basis functions. This provides an approximate closed-form solution system. Some guidelines are given selecting number approximating series. >

参考文章(13)
John L. Casti, Nonlinear System Theory ,(2012)
J. H. Wilkinson, The algebraic eigenvalue problem ,(1965)
V. Karanam, P. Frick, R. Mohler, Bilinear system identification by Walsh functions IEEE Transactions on Automatic Control. ,vol. 23, pp. 709- 713 ,(1978) , 10.1109/TAC.1978.1101806
Peter Lancaster, Explicit Solutions of Linear Matrix Equations SIAM Review. ,vol. 12, pp. 544- 566 ,(1970) , 10.1137/1012104
C. B. Moler, G. W. Stewart, An Algorithm for Generalized Matrix Eigenvalue Problems. SIAM Journal on Numerical Analysis. ,vol. 10, pp. 241- 256 ,(1973) , 10.1137/0710024
F. L. Lewis, M. A. Christodoulou, B. G. Mertzios, System inversion using orthogonal functions Circuits, Systems, and Signal Processing. ,vol. 6, pp. 347- 362 ,(1987) , 10.1007/BF01599999
J. Brewer, Kronecker products and matrix calculus in system theory IEEE Transactions on Circuits and Systems. ,vol. 25, pp. 772- 781 ,(1978) , 10.1109/TCS.1978.1084534
C. F. CHEN, C. H. HSIAO, A state-space approach to Walsh series solution of linear systems International Journal of Systems Science. ,vol. 6, pp. 833- 858 ,(1975) , 10.1080/00207727508941868
Ronald Mohler, Natural Bilinear Control Processes IEEE Transactions on Systems Science and Cybernetics. ,vol. 6, pp. 192- 197 ,(1970) , 10.1109/TSSC.1970.300341
F. Lewis, B. Mertzios, Analysis of singular systems using orthogonal functions IEEE Transactions on Automatic Control. ,vol. 32, pp. 527- 530 ,(1987) , 10.1109/TAC.1987.1104649