Symmetric vortices for the Ginzberg-Landau equations of superconductivity and the nonlinear desingularization phenomenon☆

作者: M.S Berger , Y.Y Chen

DOI: 10.1016/0022-1236(89)90071-2

关键词:

摘要: Abstract The existence of countably many distinct symmetric vortices for the nonlinear Ginzberg-Landau equations superconductivity with an arbitrary positive parameter λ is proven. We then prove a linearization phenomenon as → ∞. In this case linearized contain appropriate Dirac delta function. These are known London equations.

参考文章(7)
A.A. Abrikosov, On the Magnetic properties of superconductors of the second group Zh.Eksp.Teor.Fiz.. ,vol. 32, pp. 1174- 1182 ,(1956)
Neil S Trudinger, David G Gilbarg, Elliptic Partial Differential Equations of Second Order ,(2018)
Clifford Henry Taubes, On the equivalence of the first and second order equations for gauge theories Communications in Mathematical Physics. ,vol. 75, pp. 207- 227 ,(1980) , 10.1007/BF01212709
Clifford Henry Taubes, Arbitrary $N$-vortex solutions to the first order Ginzburg-Landau equations Communications in Mathematical Physics. ,vol. 72, pp. 277- 292 ,(1980) , 10.1007/BF01197552
L.D. Landau, V.L. Ginzburg, On the Theory of superconductivity Zh.Eksp.Teor.Fiz.. ,vol. 20, pp. 1064- 1082 ,(1950)
J. Preskill, VORTICES AND MONOPOLES ,(1986)