Monotonicity of some perturbations of irreducibly diagonally dominant M-matrices

作者: François Bouchon

DOI: 10.1007/S00211-006-0048-8

关键词:

摘要: This paper presents a new result concerning the perturbation theory of M-matrices. We give proof theorem showing that some perturbations irreducibly diagonally dominant M-matrices are monotone, together with an explicit bound norm perturbation. One assumptions matrix is sum entries each its row nonnegative. The resulting shown to be although it may not and off diagonal part have positive entries. as application second order convergence non-centered finite difference scheme applied elliptic boundary value problem.

参考文章(16)
Jens Lorenz, Zur Inversmonotonie diskreter Probleme Numerische Mathematik. ,vol. 27, pp. 227- 238 ,(1977) , 10.1007/BF01396643
Vidar Thomée, From finite differences to finite elements a short history of numerical analysis of partial differential equations Journal of Computational and Applied Mathematics. ,vol. 128, pp. 1- 54 ,(2001) , 10.1016/S0377-0427(00)00507-0
François Bouchon, Gunther H. Peichl, A second‐order immersed interface technique for an elliptic Neumann problem Numerical Methods for Partial Differential Equations. ,vol. 23, pp. 400- 420 ,(2007) , 10.1002/NUM.20187
Attahiru Sule Alfa, Jungong Xue, Qiang Ye, Entrywise perturbation theory for diagonally dominant M-matrices with applications Numerische Mathematik. ,vol. 90, pp. 401- 414 ,(2002) , 10.1007/S002110100289
L. Elsner, BOUNDS FOR DETERMINANTS OF PERTURBED M-MATRICES Linear Algebra and its Applications. ,vol. 257, pp. 283- 288 ,(1997) , 10.1016/S0024-3795(96)00174-7
A. Zafarullah, Finite Difference Scheme for a Third Boundary Value Problem Journal of the ACM. ,vol. 16, pp. 585- 591 ,(1969) , 10.1145/321541.321548
Andreas Wiegmann, Kenneth P. Bube, The Explicit-Jump Immersed Interface Method: Finite Difference Methods for PDEs with Piecewise Smooth Solutions SIAM Journal on Numerical Analysis. ,vol. 37, pp. 827- 862 ,(2000) , 10.1137/S0036142997328664
Nami Matsunaga, Tetsuro Yamamoto, Superconvergence of the Shortley-Weller approximation for Dirichlet problems Journal of Computational and Applied Mathematics. ,vol. 116, pp. 263- 273 ,(2000) , 10.1016/S0377-0427(99)00321-0
J. H. Bramble, B. E. Hubbard, A Finite Difference Analog of the Neumann Problem for Poisson’s Equation Journal of The Society for Industrial and Applied Mathematics, Series B: Numerical Analysis. ,vol. 2, pp. 1- 14 ,(1965) , 10.1137/0702001
H. J. van Linde, High-order finite-difference methods for Poisson’s equation Mathematics of Computation. ,vol. 28, pp. 369- 391 ,(1974) , 10.1090/S0025-5718-1974-0362936-2