A topic based indexing approach for searching in documents

作者: Daniel Osuna-Ontiveros , Ivan Lopez-Arevalo , Victor Sosa-Sosa

DOI: 10.1109/ICEEE.2011.6106659

关键词:

摘要: Nowadays, users of computers store a lot text documents. This requires fast and precise searches over The goal Information Retrieval (IR) models is to provide with those documents that will satisfy their information needs. core such the document representation used in indexing Traditional IR handle frequency query terms. disadvantage these they exclusively consider terms ignore similar paper proposes topic based approach represent topics associated Documents are modeled by using clustering algorithms on natural language processing. As result this proposal document-topic matrix denoting importance inside In way, each converted into vector topics. Thus, similarity measure can be applied retrieve most relevant

参考文章(19)
Elżbieta Dura, Natural language in information retrieval international conference on computational linguistics. pp. 537- 540 ,(2003) , 10.1007/3-540-36456-0_57
Hinrich Schütze, Christopher D. Manning, Prabhakar Raghavan, Introduction to Information Retrieval ,(2005)
David Snchez, Domain Ontology Learning from the Web TDX (Tesis Doctorals en Xarxa). ,(2008)
Hans Fischer, A History of the Central Limit Theorem A History of the Central Limit Theorem: From Classical to Modern Probability Theory. ,(2011) , 10.1007/978-0-387-87857-7
Teuvo Kohonen, Self-Organizing Maps ,(1995)
David M Blei, Andrew Y Ng, Michael I Jordan, None, Latent dirichlet allocation Journal of Machine Learning Research. ,vol. 3, pp. 993- 1022 ,(2003) , 10.5555/944919.944937
T. L. Griffiths, M. Steyvers, Finding scientific topics Proceedings of the National Academy of Sciences of the United States of America. ,vol. 101, pp. 5228- 5235 ,(2004) , 10.1073/PNAS.0307752101
Sebastian GA Konietzny, Laura Dietz, Alice C McHardy, Inferring functional modules of protein families with probabilistic topic models BMC Bioinformatics. ,vol. 12, pp. 141- 141 ,(2011) , 10.1186/1471-2105-12-141
Xia Lin, Dagobert Soergel, Gary Marchionini, A self-organizing semantic map for information retrieval Proceedings of the 14th annual international ACM SIGIR conference on Research and development in information retrieval - SIGIR '91. pp. 262- 269 ,(1991) , 10.1145/122860.122887